Metamath Proof Explorer


Theorem frege111

Description: If Y belongs to the R -sequence beginning with Z , then every result of an application of the procedure R to Y belongs to the R -sequence beginning with Z or precedes Z in the R -sequence. Proposition 111 of Frege1879 p. 75. (Contributed by RP, 7-Jul-2020) (Revised by RP, 8-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypotheses frege111.z
|- Z e. A
frege111.y
|- Y e. B
frege111.v
|- V e. C
frege111.r
|- R e. D
Assertion frege111
|- ( Z ( ( t+ ` R ) u. _I ) Y -> ( Y R V -> ( -. V ( t+ ` R ) Z -> Z ( ( t+ ` R ) u. _I ) V ) ) )

Proof

Step Hyp Ref Expression
1 frege111.z
 |-  Z e. A
2 frege111.y
 |-  Y e. B
3 frege111.v
 |-  V e. C
4 frege111.r
 |-  R e. D
5 1 2 3 4 frege108
 |-  ( Z ( ( t+ ` R ) u. _I ) Y -> ( Y R V -> Z ( ( t+ ` R ) u. _I ) V ) )
6 frege25
 |-  ( ( Z ( ( t+ ` R ) u. _I ) Y -> ( Y R V -> Z ( ( t+ ` R ) u. _I ) V ) ) -> ( Z ( ( t+ ` R ) u. _I ) Y -> ( Y R V -> ( -. V ( t+ ` R ) Z -> Z ( ( t+ ` R ) u. _I ) V ) ) ) )
7 5 6 ax-mp
 |-  ( Z ( ( t+ ` R ) u. _I ) Y -> ( Y R V -> ( -. V ( t+ ` R ) Z -> Z ( ( t+ ` R ) u. _I ) V ) ) )