Metamath Proof Explorer


Theorem frege25

Description: Closed form for a1dd . Proposition 25 of Frege1879 p. 42. (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)

Ref Expression
Assertion frege25
|- ( ( ph -> ( ps -> ch ) ) -> ( ph -> ( ps -> ( th -> ch ) ) ) )

Proof

Step Hyp Ref Expression
1 frege24
 |-  ( ( ps -> ch ) -> ( ps -> ( th -> ch ) ) )
2 frege5
 |-  ( ( ( ps -> ch ) -> ( ps -> ( th -> ch ) ) ) -> ( ( ph -> ( ps -> ch ) ) -> ( ph -> ( ps -> ( th -> ch ) ) ) ) )
3 1 2 ax-mp
 |-  ( ( ph -> ( ps -> ch ) ) -> ( ph -> ( ps -> ( th -> ch ) ) ) )