Description: A closed form of syl . Identical to imim2 . Theorem *2.05 of WhiteheadRussell p. 100. Proposition 5 of Frege1879 p. 32. (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | frege5 | |- ( ( ph -> ps ) -> ( ( ch -> ph ) -> ( ch -> ps ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-frege1 | |- ( ( ph -> ps ) -> ( ch -> ( ph -> ps ) ) ) |
|
2 | frege4 | |- ( ( ( ph -> ps ) -> ( ch -> ( ph -> ps ) ) ) -> ( ( ph -> ps ) -> ( ( ch -> ph ) -> ( ch -> ps ) ) ) ) |
|
3 | 1 2 | ax-mp | |- ( ( ph -> ps ) -> ( ( ch -> ph ) -> ( ch -> ps ) ) ) |