Metamath Proof Explorer


Theorem rp-7frege

Description: Distribute antecedent and add another. (Contributed by RP, 24-Dec-2019)

Ref Expression
Assertion rp-7frege
|- ( ( ph -> ( ps -> ch ) ) -> ( th -> ( ( ph -> ps ) -> ( ph -> ch ) ) ) )

Proof

Step Hyp Ref Expression
1 ax-frege2
 |-  ( ( ph -> ( ps -> ch ) ) -> ( ( ph -> ps ) -> ( ph -> ch ) ) )
2 rp-frege24
 |-  ( ( ( ph -> ( ps -> ch ) ) -> ( ( ph -> ps ) -> ( ph -> ch ) ) ) -> ( ( ph -> ( ps -> ch ) ) -> ( th -> ( ( ph -> ps ) -> ( ph -> ch ) ) ) ) )
3 1 2 ax-mp
 |-  ( ( ph -> ( ps -> ch ) ) -> ( th -> ( ( ph -> ps ) -> ( ph -> ch ) ) ) )