Metamath Proof Explorer


Theorem rp-4frege

Description: Elimination of a nested antecedent of special form. (Contributed by RP, 24-Dec-2019)

Ref Expression
Assertion rp-4frege
|- ( ( ph -> ( ( ps -> ph ) -> ch ) ) -> ( ph -> ch ) )

Proof

Step Hyp Ref Expression
1 rp-simp2-frege
 |-  ( ( ph -> ( ( ps -> ph ) -> ch ) ) -> ( ph -> ( ps -> ph ) ) )
2 rp-misc1-frege
 |-  ( ( ( ph -> ( ( ps -> ph ) -> ch ) ) -> ( ph -> ( ps -> ph ) ) ) -> ( ( ph -> ( ( ps -> ph ) -> ch ) ) -> ( ph -> ch ) ) )
3 1 2 ax-mp
 |-  ( ( ph -> ( ( ps -> ph ) -> ch ) ) -> ( ph -> ch ) )