Metamath Proof Explorer


Theorem rp-misc1-frege

Description: Double-use of ax-frege2 . (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)

Ref Expression
Assertion rp-misc1-frege
|- ( ( ( ph -> ( ps -> ch ) ) -> ( ph -> ps ) ) -> ( ( ph -> ( ps -> ch ) ) -> ( ph -> ch ) ) )

Proof

Step Hyp Ref Expression
1 ax-frege2
 |-  ( ( ph -> ( ps -> ch ) ) -> ( ( ph -> ps ) -> ( ph -> ch ) ) )
2 ax-frege2
 |-  ( ( ( ph -> ( ps -> ch ) ) -> ( ( ph -> ps ) -> ( ph -> ch ) ) ) -> ( ( ( ph -> ( ps -> ch ) ) -> ( ph -> ps ) ) -> ( ( ph -> ( ps -> ch ) ) -> ( ph -> ch ) ) ) )
3 1 2 ax-mp
 |-  ( ( ( ph -> ( ps -> ch ) ) -> ( ph -> ps ) ) -> ( ( ph -> ( ps -> ch ) ) -> ( ph -> ch ) ) )