Metamath Proof Explorer


Theorem rp-misc1-frege

Description: Double-use of ax-frege2 . (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)

Ref Expression
Assertion rp-misc1-frege ( ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( 𝜑𝜓 ) ) → ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( 𝜑𝜒 ) ) )

Proof

Step Hyp Ref Expression
1 ax-frege2 ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜒 ) ) )
2 ax-frege2 ( ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜒 ) ) ) → ( ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( 𝜑𝜓 ) ) → ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( 𝜑𝜒 ) ) ) )
3 1 2 ax-mp ( ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( 𝜑𝜓 ) ) → ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( 𝜑𝜒 ) ) )