Description: Double-use of ax-frege2 . (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | rp-misc1-frege | ⊢ ( ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( 𝜑 → 𝜓 ) ) → ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( 𝜑 → 𝜒 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-frege2 | ⊢ ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ( 𝜑 → 𝜓 ) → ( 𝜑 → 𝜒 ) ) ) | |
2 | ax-frege2 | ⊢ ( ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ( 𝜑 → 𝜓 ) → ( 𝜑 → 𝜒 ) ) ) → ( ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( 𝜑 → 𝜓 ) ) → ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( 𝜑 → 𝜒 ) ) ) ) | |
3 | 1 2 | ax-mp | ⊢ ( ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( 𝜑 → 𝜓 ) ) → ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( 𝜑 → 𝜒 ) ) ) |