Description: Introducing an embedded antecedent. Alternate proof for frege24 . Closed form for a1d . (Contributed by RP, 24-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | rp-frege24 | |- ( ( ph -> ps ) -> ( ph -> ( ch -> ps ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rp-simp2-frege | |- ( ph -> ( ps -> ( ch -> ps ) ) ) |
|
2 | ax-frege2 | |- ( ( ph -> ( ps -> ( ch -> ps ) ) ) -> ( ( ph -> ps ) -> ( ph -> ( ch -> ps ) ) ) ) |
|
3 | 1 2 | ax-mp | |- ( ( ph -> ps ) -> ( ph -> ( ch -> ps ) ) ) |