Metamath Proof Explorer


Theorem rp-frege24

Description: Introducing an embedded antecedent. Alternate proof for frege24 . Closed form for a1d . (Contributed by RP, 24-Dec-2019)

Ref Expression
Assertion rp-frege24
|- ( ( ph -> ps ) -> ( ph -> ( ch -> ps ) ) )

Proof

Step Hyp Ref Expression
1 rp-simp2-frege
 |-  ( ph -> ( ps -> ( ch -> ps ) ) )
2 ax-frege2
 |-  ( ( ph -> ( ps -> ( ch -> ps ) ) ) -> ( ( ph -> ps ) -> ( ph -> ( ch -> ps ) ) ) )
3 1 2 ax-mp
 |-  ( ( ph -> ps ) -> ( ph -> ( ch -> ps ) ) )