Metamath Proof Explorer


Theorem rp-frege24

Description: Introducing an embedded antecedent. Alternate proof for frege24 . Closed form for a1d . (Contributed by RP, 24-Dec-2019)

Ref Expression
Assertion rp-frege24 φψφχψ

Proof

Step Hyp Ref Expression
1 rp-simp2-frege φψχψ
2 ax-frege2 φψχψφψφχψ
3 1 2 ax-mp φψφχψ