Metamath Proof Explorer


Theorem rp-6frege

Description: Elimination of a nested antecedent of special form. (Contributed by RP, 24-Dec-2019)

Ref Expression
Assertion rp-6frege
|- ( ph -> ( ( ps -> ( ( ch -> ps ) -> th ) ) -> ( ps -> th ) ) )

Proof

Step Hyp Ref Expression
1 rp-4frege
 |-  ( ( ps -> ( ( ch -> ps ) -> th ) ) -> ( ps -> th ) )
2 ax-frege1
 |-  ( ( ( ps -> ( ( ch -> ps ) -> th ) ) -> ( ps -> th ) ) -> ( ph -> ( ( ps -> ( ( ch -> ps ) -> th ) ) -> ( ps -> th ) ) ) )
3 1 2 ax-mp
 |-  ( ph -> ( ( ps -> ( ( ch -> ps ) -> th ) ) -> ( ps -> th ) ) )