Metamath Proof Explorer


Theorem rp-6frege

Description: Elimination of a nested antecedent of special form. (Contributed by RP, 24-Dec-2019)

Ref Expression
Assertion rp-6frege φ ψ χ ψ θ ψ θ

Proof

Step Hyp Ref Expression
1 rp-4frege ψ χ ψ θ ψ θ
2 ax-frege1 ψ χ ψ θ ψ θ φ ψ χ ψ θ ψ θ
3 1 2 ax-mp φ ψ χ ψ θ ψ θ