Metamath Proof Explorer


Theorem rp-6frege

Description: Elimination of a nested antecedent of special form. (Contributed by RP, 24-Dec-2019)

Ref Expression
Assertion rp-6frege ( 𝜑 → ( ( 𝜓 → ( ( 𝜒𝜓 ) → 𝜃 ) ) → ( 𝜓𝜃 ) ) )

Proof

Step Hyp Ref Expression
1 rp-4frege ( ( 𝜓 → ( ( 𝜒𝜓 ) → 𝜃 ) ) → ( 𝜓𝜃 ) )
2 ax-frege1 ( ( ( 𝜓 → ( ( 𝜒𝜓 ) → 𝜃 ) ) → ( 𝜓𝜃 ) ) → ( 𝜑 → ( ( 𝜓 → ( ( 𝜒𝜓 ) → 𝜃 ) ) → ( 𝜓𝜃 ) ) ) )
3 1 2 ax-mp ( 𝜑 → ( ( 𝜓 → ( ( 𝜒𝜓 ) → 𝜃 ) ) → ( 𝜓𝜃 ) ) )