Metamath Proof Explorer


Theorem rp-8frege

Description: Eliminate antecedent when it is implied by previous antecedent. (Contributed by RP, 24-Dec-2019)

Ref Expression
Assertion rp-8frege ( ( 𝜑 → ( 𝜓 → ( ( 𝜒𝜓 ) → 𝜃 ) ) ) → ( 𝜑 → ( 𝜓𝜃 ) ) )

Proof

Step Hyp Ref Expression
1 rp-6frege ( 𝜑 → ( ( 𝜓 → ( ( 𝜒𝜓 ) → 𝜃 ) ) → ( 𝜓𝜃 ) ) )
2 ax-frege2 ( ( 𝜑 → ( ( 𝜓 → ( ( 𝜒𝜓 ) → 𝜃 ) ) → ( 𝜓𝜃 ) ) ) → ( ( 𝜑 → ( 𝜓 → ( ( 𝜒𝜓 ) → 𝜃 ) ) ) → ( 𝜑 → ( 𝜓𝜃 ) ) ) )
3 1 2 ax-mp ( ( 𝜑 → ( 𝜓 → ( ( 𝜒𝜓 ) → 𝜃 ) ) ) → ( 𝜑 → ( 𝜓𝜃 ) ) )