Metamath Proof Explorer


Theorem rp-4frege

Description: Elimination of a nested antecedent of special form. (Contributed by RP, 24-Dec-2019)

Ref Expression
Assertion rp-4frege ( ( 𝜑 → ( ( 𝜓𝜑 ) → 𝜒 ) ) → ( 𝜑𝜒 ) )

Proof

Step Hyp Ref Expression
1 rp-simp2-frege ( ( 𝜑 → ( ( 𝜓𝜑 ) → 𝜒 ) ) → ( 𝜑 → ( 𝜓𝜑 ) ) )
2 rp-misc1-frege ( ( ( 𝜑 → ( ( 𝜓𝜑 ) → 𝜒 ) ) → ( 𝜑 → ( 𝜓𝜑 ) ) ) → ( ( 𝜑 → ( ( 𝜓𝜑 ) → 𝜒 ) ) → ( 𝜑𝜒 ) ) )
3 1 2 ax-mp ( ( 𝜑 → ( ( 𝜓𝜑 ) → 𝜒 ) ) → ( 𝜑𝜒 ) )