Description: Elimination of a nested antecedent of special form. (Contributed by RP, 24-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | rp-4frege | ⊢ ( ( 𝜑 → ( ( 𝜓 → 𝜑 ) → 𝜒 ) ) → ( 𝜑 → 𝜒 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rp-simp2-frege | ⊢ ( ( 𝜑 → ( ( 𝜓 → 𝜑 ) → 𝜒 ) ) → ( 𝜑 → ( 𝜓 → 𝜑 ) ) ) | |
2 | rp-misc1-frege | ⊢ ( ( ( 𝜑 → ( ( 𝜓 → 𝜑 ) → 𝜒 ) ) → ( 𝜑 → ( 𝜓 → 𝜑 ) ) ) → ( ( 𝜑 → ( ( 𝜓 → 𝜑 ) → 𝜒 ) ) → ( 𝜑 → 𝜒 ) ) ) | |
3 | 1 2 | ax-mp | ⊢ ( ( 𝜑 → ( ( 𝜓 → 𝜑 ) → 𝜒 ) ) → ( 𝜑 → 𝜒 ) ) |