Metamath Proof Explorer


Theorem rp-7frege

Description: Distribute antecedent and add another. (Contributed by RP, 24-Dec-2019)

Ref Expression
Assertion rp-7frege ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( 𝜃 → ( ( 𝜑𝜓 ) → ( 𝜑𝜒 ) ) ) )

Proof

Step Hyp Ref Expression
1 ax-frege2 ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜒 ) ) )
2 rp-frege24 ( ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜒 ) ) ) → ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( 𝜃 → ( ( 𝜑𝜓 ) → ( 𝜑𝜒 ) ) ) ) )
3 1 2 ax-mp ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( 𝜃 → ( ( 𝜑𝜓 ) → ( 𝜑𝜒 ) ) ) )