Metamath Proof Explorer


Theorem frege111

Description: If Y belongs to the R -sequence beginning with Z , then every result of an application of the procedure R to Y belongs to the R -sequence beginning with Z or precedes Z in the R -sequence. Proposition 111 of Frege1879 p. 75. (Contributed by RP, 7-Jul-2020) (Revised by RP, 8-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypotheses frege111.z 𝑍𝐴
frege111.y 𝑌𝐵
frege111.v 𝑉𝐶
frege111.r 𝑅𝐷
Assertion frege111 ( 𝑍 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑌 → ( 𝑌 𝑅 𝑉 → ( ¬ 𝑉 ( t+ ‘ 𝑅 ) 𝑍𝑍 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑉 ) ) )

Proof

Step Hyp Ref Expression
1 frege111.z 𝑍𝐴
2 frege111.y 𝑌𝐵
3 frege111.v 𝑉𝐶
4 frege111.r 𝑅𝐷
5 1 2 3 4 frege108 ( 𝑍 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑌 → ( 𝑌 𝑅 𝑉𝑍 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑉 ) )
6 frege25 ( ( 𝑍 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑌 → ( 𝑌 𝑅 𝑉𝑍 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑉 ) ) → ( 𝑍 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑌 → ( 𝑌 𝑅 𝑉 → ( ¬ 𝑉 ( t+ ‘ 𝑅 ) 𝑍𝑍 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑉 ) ) ) )
7 5 6 ax-mp ( 𝑍 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑌 → ( 𝑌 𝑅 𝑉 → ( ¬ 𝑉 ( t+ ‘ 𝑅 ) 𝑍𝑍 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑉 ) ) )