Metamath Proof Explorer


Theorem frege130

Description: Lemma for frege131 . Proposition 130 of Frege1879 p. 84. (Contributed by RP, 9-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypotheses frege130.m M U
frege130.r R V
Assertion frege130 b ¬ b t+ R M M t+ R I b a b R a ¬ a t+ R M M t+ R I a R hereditary t+ R -1 M t+ R I M Fun R -1 -1 R hereditary t+ R -1 M t+ R I M

Proof

Step Hyp Ref Expression
1 frege130.m M U
2 frege130.r R V
3 vex a V
4 vex b V
5 3 4 1 2 frege129 Fun R -1 -1 ¬ b t+ R M M t+ R I b b R a ¬ a t+ R M M t+ R I a
6 5 alrimdv Fun R -1 -1 ¬ b t+ R M M t+ R I b a b R a ¬ a t+ R M M t+ R I a
7 6 alrimiv Fun R -1 -1 b ¬ b t+ R M M t+ R I b a b R a ¬ a t+ R M M t+ R I a
8 frege9 Fun R -1 -1 b ¬ b t+ R M M t+ R I b a b R a ¬ a t+ R M M t+ R I a b ¬ b t+ R M M t+ R I b a b R a ¬ a t+ R M M t+ R I a R hereditary t+ R -1 M t+ R I M Fun R -1 -1 R hereditary t+ R -1 M t+ R I M
9 7 8 ax-mp b ¬ b t+ R M M t+ R I b a b R a ¬ a t+ R M M t+ R I a R hereditary t+ R -1 M t+ R I M Fun R -1 -1 R hereditary t+ R -1 M t+ R I M