Metamath Proof Explorer


Theorem frege131

Description: If the procedure R is single-valued, then the property of belonging to the R -sequence begining with M or preceeding M in the R -sequence is hereditary in the R -sequence. Proposition 131 of Frege1879 p. 85. (Contributed by RP, 9-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypotheses frege130.m M U
frege130.r R V
Assertion frege131 Fun R -1 -1 R hereditary t+ R -1 M t+ R I M

Proof

Step Hyp Ref Expression
1 frege130.m M U
2 frege130.r R V
3 frege75 b b t+ R -1 M t+ R I M a b R a a t+ R -1 M t+ R I M R hereditary t+ R -1 M t+ R I M
4 elun b t+ R -1 M t+ R I M b t+ R -1 M b t+ R I M
5 df-or b t+ R -1 M b t+ R I M ¬ b t+ R -1 M b t+ R I M
6 1 elexi M V
7 vex b V
8 6 7 elimasn b t+ R -1 M M b t+ R -1
9 df-br M t+ R -1 b M b t+ R -1
10 6 7 brcnv M t+ R -1 b b t+ R M
11 8 9 10 3bitr2i b t+ R -1 M b t+ R M
12 11 notbii ¬ b t+ R -1 M ¬ b t+ R M
13 6 7 elimasn b t+ R I M M b t+ R I
14 df-br M t+ R I b M b t+ R I
15 13 14 bitr4i b t+ R I M M t+ R I b
16 12 15 imbi12i ¬ b t+ R -1 M b t+ R I M ¬ b t+ R M M t+ R I b
17 4 5 16 3bitri b t+ R -1 M t+ R I M ¬ b t+ R M M t+ R I b
18 elun a t+ R -1 M t+ R I M a t+ R -1 M a t+ R I M
19 df-or a t+ R -1 M a t+ R I M ¬ a t+ R -1 M a t+ R I M
20 vex a V
21 6 20 elimasn a t+ R -1 M M a t+ R -1
22 df-br M t+ R -1 a M a t+ R -1
23 6 20 brcnv M t+ R -1 a a t+ R M
24 21 22 23 3bitr2i a t+ R -1 M a t+ R M
25 24 notbii ¬ a t+ R -1 M ¬ a t+ R M
26 6 20 elimasn a t+ R I M M a t+ R I
27 df-br M t+ R I a M a t+ R I
28 26 27 bitr4i a t+ R I M M t+ R I a
29 25 28 imbi12i ¬ a t+ R -1 M a t+ R I M ¬ a t+ R M M t+ R I a
30 18 19 29 3bitri a t+ R -1 M t+ R I M ¬ a t+ R M M t+ R I a
31 30 imbi2i b R a a t+ R -1 M t+ R I M b R a ¬ a t+ R M M t+ R I a
32 31 albii a b R a a t+ R -1 M t+ R I M a b R a ¬ a t+ R M M t+ R I a
33 17 32 imbi12i b t+ R -1 M t+ R I M a b R a a t+ R -1 M t+ R I M ¬ b t+ R M M t+ R I b a b R a ¬ a t+ R M M t+ R I a
34 33 albii b b t+ R -1 M t+ R I M a b R a a t+ R -1 M t+ R I M b ¬ b t+ R M M t+ R I b a b R a ¬ a t+ R M M t+ R I a
35 34 imbi1i b b t+ R -1 M t+ R I M a b R a a t+ R -1 M t+ R I M R hereditary t+ R -1 M t+ R I M b ¬ b t+ R M M t+ R I b a b R a ¬ a t+ R M M t+ R I a R hereditary t+ R -1 M t+ R I M
36 1 2 frege130 b ¬ b t+ R M M t+ R I b a b R a ¬ a t+ R M M t+ R I a R hereditary t+ R -1 M t+ R I M Fun R -1 -1 R hereditary t+ R -1 M t+ R I M
37 35 36 sylbi b b t+ R -1 M t+ R I M a b R a a t+ R -1 M t+ R I M R hereditary t+ R -1 M t+ R I M Fun R -1 -1 R hereditary t+ R -1 M t+ R I M
38 3 37 ax-mp Fun R -1 -1 R hereditary t+ R -1 M t+ R I M