Step |
Hyp |
Ref |
Expression |
1 |
|
frege130.m |
⊢ 𝑀 ∈ 𝑈 |
2 |
|
frege130.r |
⊢ 𝑅 ∈ 𝑉 |
3 |
|
frege75 |
⊢ ( ∀ 𝑏 ( 𝑏 ∈ ( ( ◡ ( t+ ‘ 𝑅 ) “ { 𝑀 } ) ∪ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑀 } ) ) → ∀ 𝑎 ( 𝑏 𝑅 𝑎 → 𝑎 ∈ ( ( ◡ ( t+ ‘ 𝑅 ) “ { 𝑀 } ) ∪ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑀 } ) ) ) ) → 𝑅 hereditary ( ( ◡ ( t+ ‘ 𝑅 ) “ { 𝑀 } ) ∪ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑀 } ) ) ) |
4 |
|
elun |
⊢ ( 𝑏 ∈ ( ( ◡ ( t+ ‘ 𝑅 ) “ { 𝑀 } ) ∪ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑀 } ) ) ↔ ( 𝑏 ∈ ( ◡ ( t+ ‘ 𝑅 ) “ { 𝑀 } ) ∨ 𝑏 ∈ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑀 } ) ) ) |
5 |
|
df-or |
⊢ ( ( 𝑏 ∈ ( ◡ ( t+ ‘ 𝑅 ) “ { 𝑀 } ) ∨ 𝑏 ∈ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑀 } ) ) ↔ ( ¬ 𝑏 ∈ ( ◡ ( t+ ‘ 𝑅 ) “ { 𝑀 } ) → 𝑏 ∈ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑀 } ) ) ) |
6 |
1
|
elexi |
⊢ 𝑀 ∈ V |
7 |
|
vex |
⊢ 𝑏 ∈ V |
8 |
6 7
|
elimasn |
⊢ ( 𝑏 ∈ ( ◡ ( t+ ‘ 𝑅 ) “ { 𝑀 } ) ↔ 〈 𝑀 , 𝑏 〉 ∈ ◡ ( t+ ‘ 𝑅 ) ) |
9 |
|
df-br |
⊢ ( 𝑀 ◡ ( t+ ‘ 𝑅 ) 𝑏 ↔ 〈 𝑀 , 𝑏 〉 ∈ ◡ ( t+ ‘ 𝑅 ) ) |
10 |
6 7
|
brcnv |
⊢ ( 𝑀 ◡ ( t+ ‘ 𝑅 ) 𝑏 ↔ 𝑏 ( t+ ‘ 𝑅 ) 𝑀 ) |
11 |
8 9 10
|
3bitr2i |
⊢ ( 𝑏 ∈ ( ◡ ( t+ ‘ 𝑅 ) “ { 𝑀 } ) ↔ 𝑏 ( t+ ‘ 𝑅 ) 𝑀 ) |
12 |
11
|
notbii |
⊢ ( ¬ 𝑏 ∈ ( ◡ ( t+ ‘ 𝑅 ) “ { 𝑀 } ) ↔ ¬ 𝑏 ( t+ ‘ 𝑅 ) 𝑀 ) |
13 |
6 7
|
elimasn |
⊢ ( 𝑏 ∈ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑀 } ) ↔ 〈 𝑀 , 𝑏 〉 ∈ ( ( t+ ‘ 𝑅 ) ∪ I ) ) |
14 |
|
df-br |
⊢ ( 𝑀 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑏 ↔ 〈 𝑀 , 𝑏 〉 ∈ ( ( t+ ‘ 𝑅 ) ∪ I ) ) |
15 |
13 14
|
bitr4i |
⊢ ( 𝑏 ∈ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑀 } ) ↔ 𝑀 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑏 ) |
16 |
12 15
|
imbi12i |
⊢ ( ( ¬ 𝑏 ∈ ( ◡ ( t+ ‘ 𝑅 ) “ { 𝑀 } ) → 𝑏 ∈ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑀 } ) ) ↔ ( ¬ 𝑏 ( t+ ‘ 𝑅 ) 𝑀 → 𝑀 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑏 ) ) |
17 |
4 5 16
|
3bitri |
⊢ ( 𝑏 ∈ ( ( ◡ ( t+ ‘ 𝑅 ) “ { 𝑀 } ) ∪ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑀 } ) ) ↔ ( ¬ 𝑏 ( t+ ‘ 𝑅 ) 𝑀 → 𝑀 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑏 ) ) |
18 |
|
elun |
⊢ ( 𝑎 ∈ ( ( ◡ ( t+ ‘ 𝑅 ) “ { 𝑀 } ) ∪ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑀 } ) ) ↔ ( 𝑎 ∈ ( ◡ ( t+ ‘ 𝑅 ) “ { 𝑀 } ) ∨ 𝑎 ∈ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑀 } ) ) ) |
19 |
|
df-or |
⊢ ( ( 𝑎 ∈ ( ◡ ( t+ ‘ 𝑅 ) “ { 𝑀 } ) ∨ 𝑎 ∈ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑀 } ) ) ↔ ( ¬ 𝑎 ∈ ( ◡ ( t+ ‘ 𝑅 ) “ { 𝑀 } ) → 𝑎 ∈ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑀 } ) ) ) |
20 |
|
vex |
⊢ 𝑎 ∈ V |
21 |
6 20
|
elimasn |
⊢ ( 𝑎 ∈ ( ◡ ( t+ ‘ 𝑅 ) “ { 𝑀 } ) ↔ 〈 𝑀 , 𝑎 〉 ∈ ◡ ( t+ ‘ 𝑅 ) ) |
22 |
|
df-br |
⊢ ( 𝑀 ◡ ( t+ ‘ 𝑅 ) 𝑎 ↔ 〈 𝑀 , 𝑎 〉 ∈ ◡ ( t+ ‘ 𝑅 ) ) |
23 |
6 20
|
brcnv |
⊢ ( 𝑀 ◡ ( t+ ‘ 𝑅 ) 𝑎 ↔ 𝑎 ( t+ ‘ 𝑅 ) 𝑀 ) |
24 |
21 22 23
|
3bitr2i |
⊢ ( 𝑎 ∈ ( ◡ ( t+ ‘ 𝑅 ) “ { 𝑀 } ) ↔ 𝑎 ( t+ ‘ 𝑅 ) 𝑀 ) |
25 |
24
|
notbii |
⊢ ( ¬ 𝑎 ∈ ( ◡ ( t+ ‘ 𝑅 ) “ { 𝑀 } ) ↔ ¬ 𝑎 ( t+ ‘ 𝑅 ) 𝑀 ) |
26 |
6 20
|
elimasn |
⊢ ( 𝑎 ∈ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑀 } ) ↔ 〈 𝑀 , 𝑎 〉 ∈ ( ( t+ ‘ 𝑅 ) ∪ I ) ) |
27 |
|
df-br |
⊢ ( 𝑀 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑎 ↔ 〈 𝑀 , 𝑎 〉 ∈ ( ( t+ ‘ 𝑅 ) ∪ I ) ) |
28 |
26 27
|
bitr4i |
⊢ ( 𝑎 ∈ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑀 } ) ↔ 𝑀 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑎 ) |
29 |
25 28
|
imbi12i |
⊢ ( ( ¬ 𝑎 ∈ ( ◡ ( t+ ‘ 𝑅 ) “ { 𝑀 } ) → 𝑎 ∈ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑀 } ) ) ↔ ( ¬ 𝑎 ( t+ ‘ 𝑅 ) 𝑀 → 𝑀 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑎 ) ) |
30 |
18 19 29
|
3bitri |
⊢ ( 𝑎 ∈ ( ( ◡ ( t+ ‘ 𝑅 ) “ { 𝑀 } ) ∪ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑀 } ) ) ↔ ( ¬ 𝑎 ( t+ ‘ 𝑅 ) 𝑀 → 𝑀 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑎 ) ) |
31 |
30
|
imbi2i |
⊢ ( ( 𝑏 𝑅 𝑎 → 𝑎 ∈ ( ( ◡ ( t+ ‘ 𝑅 ) “ { 𝑀 } ) ∪ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑀 } ) ) ) ↔ ( 𝑏 𝑅 𝑎 → ( ¬ 𝑎 ( t+ ‘ 𝑅 ) 𝑀 → 𝑀 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑎 ) ) ) |
32 |
31
|
albii |
⊢ ( ∀ 𝑎 ( 𝑏 𝑅 𝑎 → 𝑎 ∈ ( ( ◡ ( t+ ‘ 𝑅 ) “ { 𝑀 } ) ∪ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑀 } ) ) ) ↔ ∀ 𝑎 ( 𝑏 𝑅 𝑎 → ( ¬ 𝑎 ( t+ ‘ 𝑅 ) 𝑀 → 𝑀 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑎 ) ) ) |
33 |
17 32
|
imbi12i |
⊢ ( ( 𝑏 ∈ ( ( ◡ ( t+ ‘ 𝑅 ) “ { 𝑀 } ) ∪ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑀 } ) ) → ∀ 𝑎 ( 𝑏 𝑅 𝑎 → 𝑎 ∈ ( ( ◡ ( t+ ‘ 𝑅 ) “ { 𝑀 } ) ∪ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑀 } ) ) ) ) ↔ ( ( ¬ 𝑏 ( t+ ‘ 𝑅 ) 𝑀 → 𝑀 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑏 ) → ∀ 𝑎 ( 𝑏 𝑅 𝑎 → ( ¬ 𝑎 ( t+ ‘ 𝑅 ) 𝑀 → 𝑀 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑎 ) ) ) ) |
34 |
33
|
albii |
⊢ ( ∀ 𝑏 ( 𝑏 ∈ ( ( ◡ ( t+ ‘ 𝑅 ) “ { 𝑀 } ) ∪ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑀 } ) ) → ∀ 𝑎 ( 𝑏 𝑅 𝑎 → 𝑎 ∈ ( ( ◡ ( t+ ‘ 𝑅 ) “ { 𝑀 } ) ∪ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑀 } ) ) ) ) ↔ ∀ 𝑏 ( ( ¬ 𝑏 ( t+ ‘ 𝑅 ) 𝑀 → 𝑀 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑏 ) → ∀ 𝑎 ( 𝑏 𝑅 𝑎 → ( ¬ 𝑎 ( t+ ‘ 𝑅 ) 𝑀 → 𝑀 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑎 ) ) ) ) |
35 |
34
|
imbi1i |
⊢ ( ( ∀ 𝑏 ( 𝑏 ∈ ( ( ◡ ( t+ ‘ 𝑅 ) “ { 𝑀 } ) ∪ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑀 } ) ) → ∀ 𝑎 ( 𝑏 𝑅 𝑎 → 𝑎 ∈ ( ( ◡ ( t+ ‘ 𝑅 ) “ { 𝑀 } ) ∪ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑀 } ) ) ) ) → 𝑅 hereditary ( ( ◡ ( t+ ‘ 𝑅 ) “ { 𝑀 } ) ∪ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑀 } ) ) ) ↔ ( ∀ 𝑏 ( ( ¬ 𝑏 ( t+ ‘ 𝑅 ) 𝑀 → 𝑀 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑏 ) → ∀ 𝑎 ( 𝑏 𝑅 𝑎 → ( ¬ 𝑎 ( t+ ‘ 𝑅 ) 𝑀 → 𝑀 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑎 ) ) ) → 𝑅 hereditary ( ( ◡ ( t+ ‘ 𝑅 ) “ { 𝑀 } ) ∪ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑀 } ) ) ) ) |
36 |
1 2
|
frege130 |
⊢ ( ( ∀ 𝑏 ( ( ¬ 𝑏 ( t+ ‘ 𝑅 ) 𝑀 → 𝑀 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑏 ) → ∀ 𝑎 ( 𝑏 𝑅 𝑎 → ( ¬ 𝑎 ( t+ ‘ 𝑅 ) 𝑀 → 𝑀 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑎 ) ) ) → 𝑅 hereditary ( ( ◡ ( t+ ‘ 𝑅 ) “ { 𝑀 } ) ∪ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑀 } ) ) ) → ( Fun ◡ ◡ 𝑅 → 𝑅 hereditary ( ( ◡ ( t+ ‘ 𝑅 ) “ { 𝑀 } ) ∪ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑀 } ) ) ) ) |
37 |
35 36
|
sylbi |
⊢ ( ( ∀ 𝑏 ( 𝑏 ∈ ( ( ◡ ( t+ ‘ 𝑅 ) “ { 𝑀 } ) ∪ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑀 } ) ) → ∀ 𝑎 ( 𝑏 𝑅 𝑎 → 𝑎 ∈ ( ( ◡ ( t+ ‘ 𝑅 ) “ { 𝑀 } ) ∪ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑀 } ) ) ) ) → 𝑅 hereditary ( ( ◡ ( t+ ‘ 𝑅 ) “ { 𝑀 } ) ∪ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑀 } ) ) ) → ( Fun ◡ ◡ 𝑅 → 𝑅 hereditary ( ( ◡ ( t+ ‘ 𝑅 ) “ { 𝑀 } ) ∪ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑀 } ) ) ) ) |
38 |
3 37
|
ax-mp |
⊢ ( Fun ◡ ◡ 𝑅 → 𝑅 hereditary ( ( ◡ ( t+ ‘ 𝑅 ) “ { 𝑀 } ) ∪ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑀 } ) ) ) |