| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frege130.m |
⊢ 𝑀 ∈ 𝑈 |
| 2 |
|
frege130.r |
⊢ 𝑅 ∈ 𝑉 |
| 3 |
|
frege75 |
⊢ ( ∀ 𝑏 ( 𝑏 ∈ ( ( ◡ ( t+ ‘ 𝑅 ) “ { 𝑀 } ) ∪ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑀 } ) ) → ∀ 𝑎 ( 𝑏 𝑅 𝑎 → 𝑎 ∈ ( ( ◡ ( t+ ‘ 𝑅 ) “ { 𝑀 } ) ∪ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑀 } ) ) ) ) → 𝑅 hereditary ( ( ◡ ( t+ ‘ 𝑅 ) “ { 𝑀 } ) ∪ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑀 } ) ) ) |
| 4 |
|
elun |
⊢ ( 𝑏 ∈ ( ( ◡ ( t+ ‘ 𝑅 ) “ { 𝑀 } ) ∪ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑀 } ) ) ↔ ( 𝑏 ∈ ( ◡ ( t+ ‘ 𝑅 ) “ { 𝑀 } ) ∨ 𝑏 ∈ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑀 } ) ) ) |
| 5 |
|
df-or |
⊢ ( ( 𝑏 ∈ ( ◡ ( t+ ‘ 𝑅 ) “ { 𝑀 } ) ∨ 𝑏 ∈ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑀 } ) ) ↔ ( ¬ 𝑏 ∈ ( ◡ ( t+ ‘ 𝑅 ) “ { 𝑀 } ) → 𝑏 ∈ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑀 } ) ) ) |
| 6 |
1
|
elexi |
⊢ 𝑀 ∈ V |
| 7 |
|
vex |
⊢ 𝑏 ∈ V |
| 8 |
6 7
|
elimasn |
⊢ ( 𝑏 ∈ ( ◡ ( t+ ‘ 𝑅 ) “ { 𝑀 } ) ↔ 〈 𝑀 , 𝑏 〉 ∈ ◡ ( t+ ‘ 𝑅 ) ) |
| 9 |
|
df-br |
⊢ ( 𝑀 ◡ ( t+ ‘ 𝑅 ) 𝑏 ↔ 〈 𝑀 , 𝑏 〉 ∈ ◡ ( t+ ‘ 𝑅 ) ) |
| 10 |
6 7
|
brcnv |
⊢ ( 𝑀 ◡ ( t+ ‘ 𝑅 ) 𝑏 ↔ 𝑏 ( t+ ‘ 𝑅 ) 𝑀 ) |
| 11 |
8 9 10
|
3bitr2i |
⊢ ( 𝑏 ∈ ( ◡ ( t+ ‘ 𝑅 ) “ { 𝑀 } ) ↔ 𝑏 ( t+ ‘ 𝑅 ) 𝑀 ) |
| 12 |
11
|
notbii |
⊢ ( ¬ 𝑏 ∈ ( ◡ ( t+ ‘ 𝑅 ) “ { 𝑀 } ) ↔ ¬ 𝑏 ( t+ ‘ 𝑅 ) 𝑀 ) |
| 13 |
6 7
|
elimasn |
⊢ ( 𝑏 ∈ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑀 } ) ↔ 〈 𝑀 , 𝑏 〉 ∈ ( ( t+ ‘ 𝑅 ) ∪ I ) ) |
| 14 |
|
df-br |
⊢ ( 𝑀 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑏 ↔ 〈 𝑀 , 𝑏 〉 ∈ ( ( t+ ‘ 𝑅 ) ∪ I ) ) |
| 15 |
13 14
|
bitr4i |
⊢ ( 𝑏 ∈ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑀 } ) ↔ 𝑀 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑏 ) |
| 16 |
12 15
|
imbi12i |
⊢ ( ( ¬ 𝑏 ∈ ( ◡ ( t+ ‘ 𝑅 ) “ { 𝑀 } ) → 𝑏 ∈ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑀 } ) ) ↔ ( ¬ 𝑏 ( t+ ‘ 𝑅 ) 𝑀 → 𝑀 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑏 ) ) |
| 17 |
4 5 16
|
3bitri |
⊢ ( 𝑏 ∈ ( ( ◡ ( t+ ‘ 𝑅 ) “ { 𝑀 } ) ∪ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑀 } ) ) ↔ ( ¬ 𝑏 ( t+ ‘ 𝑅 ) 𝑀 → 𝑀 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑏 ) ) |
| 18 |
|
elun |
⊢ ( 𝑎 ∈ ( ( ◡ ( t+ ‘ 𝑅 ) “ { 𝑀 } ) ∪ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑀 } ) ) ↔ ( 𝑎 ∈ ( ◡ ( t+ ‘ 𝑅 ) “ { 𝑀 } ) ∨ 𝑎 ∈ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑀 } ) ) ) |
| 19 |
|
df-or |
⊢ ( ( 𝑎 ∈ ( ◡ ( t+ ‘ 𝑅 ) “ { 𝑀 } ) ∨ 𝑎 ∈ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑀 } ) ) ↔ ( ¬ 𝑎 ∈ ( ◡ ( t+ ‘ 𝑅 ) “ { 𝑀 } ) → 𝑎 ∈ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑀 } ) ) ) |
| 20 |
|
vex |
⊢ 𝑎 ∈ V |
| 21 |
6 20
|
elimasn |
⊢ ( 𝑎 ∈ ( ◡ ( t+ ‘ 𝑅 ) “ { 𝑀 } ) ↔ 〈 𝑀 , 𝑎 〉 ∈ ◡ ( t+ ‘ 𝑅 ) ) |
| 22 |
|
df-br |
⊢ ( 𝑀 ◡ ( t+ ‘ 𝑅 ) 𝑎 ↔ 〈 𝑀 , 𝑎 〉 ∈ ◡ ( t+ ‘ 𝑅 ) ) |
| 23 |
6 20
|
brcnv |
⊢ ( 𝑀 ◡ ( t+ ‘ 𝑅 ) 𝑎 ↔ 𝑎 ( t+ ‘ 𝑅 ) 𝑀 ) |
| 24 |
21 22 23
|
3bitr2i |
⊢ ( 𝑎 ∈ ( ◡ ( t+ ‘ 𝑅 ) “ { 𝑀 } ) ↔ 𝑎 ( t+ ‘ 𝑅 ) 𝑀 ) |
| 25 |
24
|
notbii |
⊢ ( ¬ 𝑎 ∈ ( ◡ ( t+ ‘ 𝑅 ) “ { 𝑀 } ) ↔ ¬ 𝑎 ( t+ ‘ 𝑅 ) 𝑀 ) |
| 26 |
6 20
|
elimasn |
⊢ ( 𝑎 ∈ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑀 } ) ↔ 〈 𝑀 , 𝑎 〉 ∈ ( ( t+ ‘ 𝑅 ) ∪ I ) ) |
| 27 |
|
df-br |
⊢ ( 𝑀 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑎 ↔ 〈 𝑀 , 𝑎 〉 ∈ ( ( t+ ‘ 𝑅 ) ∪ I ) ) |
| 28 |
26 27
|
bitr4i |
⊢ ( 𝑎 ∈ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑀 } ) ↔ 𝑀 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑎 ) |
| 29 |
25 28
|
imbi12i |
⊢ ( ( ¬ 𝑎 ∈ ( ◡ ( t+ ‘ 𝑅 ) “ { 𝑀 } ) → 𝑎 ∈ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑀 } ) ) ↔ ( ¬ 𝑎 ( t+ ‘ 𝑅 ) 𝑀 → 𝑀 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑎 ) ) |
| 30 |
18 19 29
|
3bitri |
⊢ ( 𝑎 ∈ ( ( ◡ ( t+ ‘ 𝑅 ) “ { 𝑀 } ) ∪ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑀 } ) ) ↔ ( ¬ 𝑎 ( t+ ‘ 𝑅 ) 𝑀 → 𝑀 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑎 ) ) |
| 31 |
30
|
imbi2i |
⊢ ( ( 𝑏 𝑅 𝑎 → 𝑎 ∈ ( ( ◡ ( t+ ‘ 𝑅 ) “ { 𝑀 } ) ∪ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑀 } ) ) ) ↔ ( 𝑏 𝑅 𝑎 → ( ¬ 𝑎 ( t+ ‘ 𝑅 ) 𝑀 → 𝑀 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑎 ) ) ) |
| 32 |
31
|
albii |
⊢ ( ∀ 𝑎 ( 𝑏 𝑅 𝑎 → 𝑎 ∈ ( ( ◡ ( t+ ‘ 𝑅 ) “ { 𝑀 } ) ∪ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑀 } ) ) ) ↔ ∀ 𝑎 ( 𝑏 𝑅 𝑎 → ( ¬ 𝑎 ( t+ ‘ 𝑅 ) 𝑀 → 𝑀 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑎 ) ) ) |
| 33 |
17 32
|
imbi12i |
⊢ ( ( 𝑏 ∈ ( ( ◡ ( t+ ‘ 𝑅 ) “ { 𝑀 } ) ∪ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑀 } ) ) → ∀ 𝑎 ( 𝑏 𝑅 𝑎 → 𝑎 ∈ ( ( ◡ ( t+ ‘ 𝑅 ) “ { 𝑀 } ) ∪ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑀 } ) ) ) ) ↔ ( ( ¬ 𝑏 ( t+ ‘ 𝑅 ) 𝑀 → 𝑀 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑏 ) → ∀ 𝑎 ( 𝑏 𝑅 𝑎 → ( ¬ 𝑎 ( t+ ‘ 𝑅 ) 𝑀 → 𝑀 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑎 ) ) ) ) |
| 34 |
33
|
albii |
⊢ ( ∀ 𝑏 ( 𝑏 ∈ ( ( ◡ ( t+ ‘ 𝑅 ) “ { 𝑀 } ) ∪ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑀 } ) ) → ∀ 𝑎 ( 𝑏 𝑅 𝑎 → 𝑎 ∈ ( ( ◡ ( t+ ‘ 𝑅 ) “ { 𝑀 } ) ∪ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑀 } ) ) ) ) ↔ ∀ 𝑏 ( ( ¬ 𝑏 ( t+ ‘ 𝑅 ) 𝑀 → 𝑀 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑏 ) → ∀ 𝑎 ( 𝑏 𝑅 𝑎 → ( ¬ 𝑎 ( t+ ‘ 𝑅 ) 𝑀 → 𝑀 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑎 ) ) ) ) |
| 35 |
34
|
imbi1i |
⊢ ( ( ∀ 𝑏 ( 𝑏 ∈ ( ( ◡ ( t+ ‘ 𝑅 ) “ { 𝑀 } ) ∪ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑀 } ) ) → ∀ 𝑎 ( 𝑏 𝑅 𝑎 → 𝑎 ∈ ( ( ◡ ( t+ ‘ 𝑅 ) “ { 𝑀 } ) ∪ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑀 } ) ) ) ) → 𝑅 hereditary ( ( ◡ ( t+ ‘ 𝑅 ) “ { 𝑀 } ) ∪ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑀 } ) ) ) ↔ ( ∀ 𝑏 ( ( ¬ 𝑏 ( t+ ‘ 𝑅 ) 𝑀 → 𝑀 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑏 ) → ∀ 𝑎 ( 𝑏 𝑅 𝑎 → ( ¬ 𝑎 ( t+ ‘ 𝑅 ) 𝑀 → 𝑀 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑎 ) ) ) → 𝑅 hereditary ( ( ◡ ( t+ ‘ 𝑅 ) “ { 𝑀 } ) ∪ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑀 } ) ) ) ) |
| 36 |
1 2
|
frege130 |
⊢ ( ( ∀ 𝑏 ( ( ¬ 𝑏 ( t+ ‘ 𝑅 ) 𝑀 → 𝑀 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑏 ) → ∀ 𝑎 ( 𝑏 𝑅 𝑎 → ( ¬ 𝑎 ( t+ ‘ 𝑅 ) 𝑀 → 𝑀 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑎 ) ) ) → 𝑅 hereditary ( ( ◡ ( t+ ‘ 𝑅 ) “ { 𝑀 } ) ∪ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑀 } ) ) ) → ( Fun ◡ ◡ 𝑅 → 𝑅 hereditary ( ( ◡ ( t+ ‘ 𝑅 ) “ { 𝑀 } ) ∪ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑀 } ) ) ) ) |
| 37 |
35 36
|
sylbi |
⊢ ( ( ∀ 𝑏 ( 𝑏 ∈ ( ( ◡ ( t+ ‘ 𝑅 ) “ { 𝑀 } ) ∪ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑀 } ) ) → ∀ 𝑎 ( 𝑏 𝑅 𝑎 → 𝑎 ∈ ( ( ◡ ( t+ ‘ 𝑅 ) “ { 𝑀 } ) ∪ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑀 } ) ) ) ) → 𝑅 hereditary ( ( ◡ ( t+ ‘ 𝑅 ) “ { 𝑀 } ) ∪ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑀 } ) ) ) → ( Fun ◡ ◡ 𝑅 → 𝑅 hereditary ( ( ◡ ( t+ ‘ 𝑅 ) “ { 𝑀 } ) ∪ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑀 } ) ) ) ) |
| 38 |
3 37
|
ax-mp |
⊢ ( Fun ◡ ◡ 𝑅 → 𝑅 hereditary ( ( ◡ ( t+ ‘ 𝑅 ) “ { 𝑀 } ) ∪ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑀 } ) ) ) |