Metamath Proof Explorer


Theorem frege32

Description: Deduce con1 from con3 . Proposition 32 of Frege1879 p. 44. (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)

Ref Expression
Assertion frege32 ¬ φ ψ ¬ ψ ¬ ¬ φ ¬ φ ψ ¬ ψ φ

Proof

Step Hyp Ref Expression
1 ax-frege31 ¬ ¬ φ φ
2 frege7 ¬ ¬ φ φ ¬ φ ψ ¬ ψ ¬ ¬ φ ¬ φ ψ ¬ ψ φ
3 1 2 ax-mp ¬ φ ψ ¬ ψ ¬ ¬ φ ¬ φ ψ ¬ ψ φ