Metamath Proof Explorer


Theorem frege32

Description: Deduce con1 from con3 . Proposition 32 of Frege1879 p. 44. (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)

Ref Expression
Assertion frege32 ( ( ( ¬ 𝜑𝜓 ) → ( ¬ 𝜓 → ¬ ¬ 𝜑 ) ) → ( ( ¬ 𝜑𝜓 ) → ( ¬ 𝜓𝜑 ) ) )

Proof

Step Hyp Ref Expression
1 ax-frege31 ( ¬ ¬ 𝜑𝜑 )
2 frege7 ( ( ¬ ¬ 𝜑𝜑 ) → ( ( ( ¬ 𝜑𝜓 ) → ( ¬ 𝜓 → ¬ ¬ 𝜑 ) ) → ( ( ¬ 𝜑𝜓 ) → ( ¬ 𝜓𝜑 ) ) ) )
3 1 2 ax-mp ( ( ( ¬ 𝜑𝜓 ) → ( ¬ 𝜓 → ¬ ¬ 𝜑 ) ) → ( ( ¬ 𝜑𝜓 ) → ( ¬ 𝜓𝜑 ) ) )