Metamath Proof Explorer


Theorem frege32

Description: Deduce con1 from con3 . Proposition 32 of Frege1879 p. 44. (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)

Ref Expression
Assertion frege32 ¬φψ¬ψ¬¬φ¬φψ¬ψφ

Proof

Step Hyp Ref Expression
1 ax-frege31 ¬¬φφ
2 frege7 ¬¬φφ¬φψ¬ψ¬¬φ¬φψ¬ψφ
3 1 2 ax-mp ¬φψ¬ψ¬¬φ¬φψ¬ψφ