Metamath Proof Explorer


Theorem frege55lem1a

Description: Necessary deduction regarding substitution of value in equality. (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)

Ref Expression
Assertion frege55lem1a τ if- ψ φ ¬ φ τ ψ φ

Proof

Step Hyp Ref Expression
1 frege54cor0a ψ φ if- ψ φ ¬ φ
2 1 biimpri if- ψ φ ¬ φ ψ φ
3 2 imim2i τ if- ψ φ ¬ φ τ ψ φ