Metamath Proof Explorer


Theorem frege55lem1a

Description: Necessary deduction regarding substitution of value in equality. (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)

Ref Expression
Assertion frege55lem1a ( ( 𝜏 → if- ( 𝜓 , 𝜑 , ¬ 𝜑 ) ) → ( 𝜏 → ( 𝜓𝜑 ) ) )

Proof

Step Hyp Ref Expression
1 frege54cor0a ( ( 𝜓𝜑 ) ↔ if- ( 𝜓 , 𝜑 , ¬ 𝜑 ) )
2 1 biimpri ( if- ( 𝜓 , 𝜑 , ¬ 𝜑 ) → ( 𝜓𝜑 ) )
3 2 imim2i ( ( 𝜏 → if- ( 𝜓 , 𝜑 , ¬ 𝜑 ) ) → ( 𝜏 → ( 𝜓𝜑 ) ) )