Metamath Proof Explorer


Theorem frege54cor0a

Description: Synonym for logical equivalence. (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)

Ref Expression
Assertion frege54cor0a ( ( 𝜓𝜑 ) ↔ if- ( 𝜓 , 𝜑 , ¬ 𝜑 ) )

Proof

Step Hyp Ref Expression
1 ax-frege28 ( ( 𝜑𝜓 ) → ( ¬ 𝜓 → ¬ 𝜑 ) )
2 1 anim2i ( ( ( 𝜓𝜑 ) ∧ ( 𝜑𝜓 ) ) → ( ( 𝜓𝜑 ) ∧ ( ¬ 𝜓 → ¬ 𝜑 ) ) )
3 con4 ( ( ¬ 𝜓 → ¬ 𝜑 ) → ( 𝜑𝜓 ) )
4 3 anim2i ( ( ( 𝜓𝜑 ) ∧ ( ¬ 𝜓 → ¬ 𝜑 ) ) → ( ( 𝜓𝜑 ) ∧ ( 𝜑𝜓 ) ) )
5 2 4 impbii ( ( ( 𝜓𝜑 ) ∧ ( 𝜑𝜓 ) ) ↔ ( ( 𝜓𝜑 ) ∧ ( ¬ 𝜓 → ¬ 𝜑 ) ) )
6 dfbi2 ( ( 𝜓𝜑 ) ↔ ( ( 𝜓𝜑 ) ∧ ( 𝜑𝜓 ) ) )
7 dfifp2 ( if- ( 𝜓 , 𝜑 , ¬ 𝜑 ) ↔ ( ( 𝜓𝜑 ) ∧ ( ¬ 𝜓 → ¬ 𝜑 ) ) )
8 5 6 7 3bitr4i ( ( 𝜓𝜑 ) ↔ if- ( 𝜓 , 𝜑 , ¬ 𝜑 ) )