Step |
Hyp |
Ref |
Expression |
1 |
|
ax-frege28 |
⊢ ( ( 𝜑 → 𝜓 ) → ( ¬ 𝜓 → ¬ 𝜑 ) ) |
2 |
1
|
anim2i |
⊢ ( ( ( 𝜓 → 𝜑 ) ∧ ( 𝜑 → 𝜓 ) ) → ( ( 𝜓 → 𝜑 ) ∧ ( ¬ 𝜓 → ¬ 𝜑 ) ) ) |
3 |
|
con4 |
⊢ ( ( ¬ 𝜓 → ¬ 𝜑 ) → ( 𝜑 → 𝜓 ) ) |
4 |
3
|
anim2i |
⊢ ( ( ( 𝜓 → 𝜑 ) ∧ ( ¬ 𝜓 → ¬ 𝜑 ) ) → ( ( 𝜓 → 𝜑 ) ∧ ( 𝜑 → 𝜓 ) ) ) |
5 |
2 4
|
impbii |
⊢ ( ( ( 𝜓 → 𝜑 ) ∧ ( 𝜑 → 𝜓 ) ) ↔ ( ( 𝜓 → 𝜑 ) ∧ ( ¬ 𝜓 → ¬ 𝜑 ) ) ) |
6 |
|
dfbi2 |
⊢ ( ( 𝜓 ↔ 𝜑 ) ↔ ( ( 𝜓 → 𝜑 ) ∧ ( 𝜑 → 𝜓 ) ) ) |
7 |
|
dfifp2 |
⊢ ( if- ( 𝜓 , 𝜑 , ¬ 𝜑 ) ↔ ( ( 𝜓 → 𝜑 ) ∧ ( ¬ 𝜓 → ¬ 𝜑 ) ) ) |
8 |
5 6 7
|
3bitr4i |
⊢ ( ( 𝜓 ↔ 𝜑 ) ↔ if- ( 𝜓 , 𝜑 , ¬ 𝜑 ) ) |