Metamath Proof Explorer


Theorem frege54cor1a

Description: Reflexive equality. (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)

Ref Expression
Assertion frege54cor1a if- ( 𝜑 , 𝜑 , ¬ 𝜑 )

Proof

Step Hyp Ref Expression
1 ax-frege54a ( 𝜑𝜑 )
2 frege54cor0a ( ( 𝜑𝜑 ) ↔ if- ( 𝜑 , 𝜑 , ¬ 𝜑 ) )
3 1 2 mpbi if- ( 𝜑 , 𝜑 , ¬ 𝜑 )