Metamath Proof Explorer


Theorem frege54cor1a

Description: Reflexive equality. (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)

Ref Expression
Assertion frege54cor1a
|- if- ( ph , ph , -. ph )

Proof

Step Hyp Ref Expression
1 ax-frege54a
 |-  ( ph <-> ph )
2 frege54cor0a
 |-  ( ( ph <-> ph ) <-> if- ( ph , ph , -. ph ) )
3 1 2 mpbi
 |-  if- ( ph , ph , -. ph )