Step |
Hyp |
Ref |
Expression |
1 |
|
ax-frege28 |
|- ( ( ph -> ps ) -> ( -. ps -> -. ph ) ) |
2 |
1
|
anim2i |
|- ( ( ( ps -> ph ) /\ ( ph -> ps ) ) -> ( ( ps -> ph ) /\ ( -. ps -> -. ph ) ) ) |
3 |
|
con4 |
|- ( ( -. ps -> -. ph ) -> ( ph -> ps ) ) |
4 |
3
|
anim2i |
|- ( ( ( ps -> ph ) /\ ( -. ps -> -. ph ) ) -> ( ( ps -> ph ) /\ ( ph -> ps ) ) ) |
5 |
2 4
|
impbii |
|- ( ( ( ps -> ph ) /\ ( ph -> ps ) ) <-> ( ( ps -> ph ) /\ ( -. ps -> -. ph ) ) ) |
6 |
|
dfbi2 |
|- ( ( ps <-> ph ) <-> ( ( ps -> ph ) /\ ( ph -> ps ) ) ) |
7 |
|
dfifp2 |
|- ( if- ( ps , ph , -. ph ) <-> ( ( ps -> ph ) /\ ( -. ps -> -. ph ) ) ) |
8 |
5 6 7
|
3bitr4i |
|- ( ( ps <-> ph ) <-> if- ( ps , ph , -. ph ) ) |