Metamath Proof Explorer


Theorem frege55lem1a

Description: Necessary deduction regarding substitution of value in equality. (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)

Ref Expression
Assertion frege55lem1a τif-ψφ¬φτψφ

Proof

Step Hyp Ref Expression
1 frege54cor0a ψφif-ψφ¬φ
2 1 biimpri if-ψφ¬φψφ
3 2 imim2i τif-ψφ¬φτψφ