Metamath Proof Explorer


Theorem frege59c

Description: A kind of Aristotelian inference. Proposition 59 of Frege1879 p. 51.

Note: in the Bauer-Meenfelberg translation published in van Heijenoort's collectionFrom Frege to Goedel, this proof has the frege12 incorrectly referenced where frege30 is in the original. (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)

Ref Expression
Hypothesis frege59c.a AB
Assertion frege59c [˙A/x]˙φ¬[˙A/x]˙ψ¬xφψ

Proof

Step Hyp Ref Expression
1 frege59c.a AB
2 1 frege58c xφψ[˙A/x]˙φψ
3 sbcim1 [˙A/x]˙φψ[˙A/x]˙φ[˙A/x]˙ψ
4 2 3 syl xφψ[˙A/x]˙φ[˙A/x]˙ψ
5 frege30 xφψ[˙A/x]˙φ[˙A/x]˙ψ[˙A/x]˙φ¬[˙A/x]˙ψ¬xφψ
6 4 5 ax-mp [˙A/x]˙φ¬[˙A/x]˙ψ¬xφψ