Metamath Proof Explorer


Theorem frege59c

Description: A kind of Aristotelian inference. Proposition 59 of Frege1879 p. 51.

Note: in the Bauer-Meenfelberg translation published in van Heijenoort's collectionFrom Frege to Goedel, this proof has the frege12 incorrectly referenced where frege30 is in the original. (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)

Ref Expression
Hypothesis frege59c.a
|- A e. B
Assertion frege59c
|- ( [. A / x ]. ph -> ( -. [. A / x ]. ps -> -. A. x ( ph -> ps ) ) )

Proof

Step Hyp Ref Expression
1 frege59c.a
 |-  A e. B
2 1 frege58c
 |-  ( A. x ( ph -> ps ) -> [. A / x ]. ( ph -> ps ) )
3 sbcim1
 |-  ( [. A / x ]. ( ph -> ps ) -> ( [. A / x ]. ph -> [. A / x ]. ps ) )
4 2 3 syl
 |-  ( A. x ( ph -> ps ) -> ( [. A / x ]. ph -> [. A / x ]. ps ) )
5 frege30
 |-  ( ( A. x ( ph -> ps ) -> ( [. A / x ]. ph -> [. A / x ]. ps ) ) -> ( [. A / x ]. ph -> ( -. [. A / x ]. ps -> -. A. x ( ph -> ps ) ) ) )
6 4 5 ax-mp
 |-  ( [. A / x ]. ph -> ( -. [. A / x ]. ps -> -. A. x ( ph -> ps ) ) )