Description: A kind of Aristotelian inference. Proposition 59 of Frege1879 p. 51.
Note: in the Bauer-Meenfelberg translation published in van Heijenoort's collectionFrom Frege to Goedel, this proof has the frege12 incorrectly referenced where frege30 is in the original. (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | frege59c.a | |- A e. B |
|
Assertion | frege59c | |- ( [. A / x ]. ph -> ( -. [. A / x ]. ps -> -. A. x ( ph -> ps ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege59c.a | |- A e. B |
|
2 | 1 | frege58c | |- ( A. x ( ph -> ps ) -> [. A / x ]. ( ph -> ps ) ) |
3 | sbcim1 | |- ( [. A / x ]. ( ph -> ps ) -> ( [. A / x ]. ph -> [. A / x ]. ps ) ) |
|
4 | 2 3 | syl | |- ( A. x ( ph -> ps ) -> ( [. A / x ]. ph -> [. A / x ]. ps ) ) |
5 | frege30 | |- ( ( A. x ( ph -> ps ) -> ( [. A / x ]. ph -> [. A / x ]. ps ) ) -> ( [. A / x ]. ph -> ( -. [. A / x ]. ps -> -. A. x ( ph -> ps ) ) ) ) |
|
6 | 4 5 | ax-mp | |- ( [. A / x ]. ph -> ( -. [. A / x ]. ps -> -. A. x ( ph -> ps ) ) ) |