Metamath Proof Explorer


Theorem frege68c

Description: Combination of applying a definition and applying it to a specific instance. Proposition 68 of Frege1879 p. 54. (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)

Ref Expression
Hypothesis frege59c.a AB
Assertion frege68c xφψψ[˙A/x]˙φ

Proof

Step Hyp Ref Expression
1 frege59c.a AB
2 frege57aid xφψψxφ
3 1 frege67c xφψψxφxφψψ[˙A/x]˙φ
4 2 3 ax-mp xφψψ[˙A/x]˙φ