Metamath Proof Explorer


Theorem freq12d

Description: Equality deduction for founded relations. (Contributed by Stefan O'Rear, 19-Jan-2015)

Ref Expression
Hypotheses weeq12d.l φR=S
weeq12d.r φA=B
Assertion freq12d φRFrASFrB

Proof

Step Hyp Ref Expression
1 weeq12d.l φR=S
2 weeq12d.r φA=B
3 freq1 R=SRFrASFrA
4 1 3 syl φRFrASFrA
5 freq2 A=BSFrASFrB
6 2 5 syl φSFrASFrB
7 4 6 bitrd φRFrASFrB