Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
fsnd
Next ⟩
f1oprswap
Metamath Proof Explorer
Ascii
Unicode
Theorem
fsnd
Description:
A singleton of an ordered pair is a function.
(Contributed by
AV
, 17-Apr-2021)
Ref
Expression
Hypotheses
fsnd.a
⊢
φ
→
A
∈
V
fsnd.b
⊢
φ
→
B
∈
W
Assertion
fsnd
⊢
φ
→
A
B
:
A
⟶
W
Proof
Step
Hyp
Ref
Expression
1
fsnd.a
⊢
φ
→
A
∈
V
2
fsnd.b
⊢
φ
→
B
∈
W
3
1
2
jca
⊢
φ
→
A
∈
V
∧
B
∈
W
4
f1sng
⊢
A
∈
V
∧
B
∈
W
→
A
B
:
A
⟶
1-1
W
5
f1f
⊢
A
B
:
A
⟶
1-1
W
→
A
B
:
A
⟶
W
6
3
4
5
3syl
⊢
φ
→
A
B
:
A
⟶
W