Metamath Proof Explorer


Theorem f1oprswap

Description: A two-element swap is a bijection on a pair. (Contributed by Mario Carneiro, 23-Jan-2015)

Ref Expression
Assertion f1oprswap AVBWABBA:AB1-1 ontoAB

Proof

Step Hyp Ref Expression
1 f1osng AVAVAA:A1-1 ontoA
2 1 anidms AVAA:A1-1 ontoA
3 2 ad2antrr AVBWA=BAA:A1-1 ontoA
4 dfsn2 AA=AAAA
5 opeq2 A=BAA=AB
6 opeq1 A=BAA=BA
7 5 6 preq12d A=BAAAA=ABBA
8 4 7 eqtrid A=BAA=ABBA
9 dfsn2 A=AA
10 preq2 A=BAA=AB
11 9 10 eqtrid A=BA=AB
12 8 11 11 f1oeq123d A=BAA:A1-1 ontoAABBA:AB1-1 ontoAB
13 12 adantl AVBWA=BAA:A1-1 ontoAABBA:AB1-1 ontoAB
14 3 13 mpbid AVBWA=BABBA:AB1-1 ontoAB
15 simpll AVBWABAV
16 simplr AVBWABBW
17 simpr AVBWABAB
18 fnprg AVBWBWAVABABBAFnAB
19 15 16 16 15 17 18 syl221anc AVBWABABBAFnAB
20 cnvsng AVBWAB-1=BA
21 cnvsng BWAVBA-1=AB
22 21 ancoms AVBWBA-1=AB
23 20 22 uneq12d AVBWAB-1BA-1=BAAB
24 uncom BAAB=ABBA
25 23 24 eqtrdi AVBWAB-1BA-1=ABBA
26 25 adantr AVBWABAB-1BA-1=ABBA
27 df-pr ABBA=ABBA
28 27 cnveqi ABBA-1=ABBA-1
29 cnvun ABBA-1=AB-1BA-1
30 28 29 eqtri ABBA-1=AB-1BA-1
31 26 30 27 3eqtr4g AVBWABABBA-1=ABBA
32 31 fneq1d AVBWABABBA-1FnABABBAFnAB
33 19 32 mpbird AVBWABABBA-1FnAB
34 dff1o4 ABBA:AB1-1 ontoABABBAFnABABBA-1FnAB
35 19 33 34 sylanbrc AVBWABABBA:AB1-1 ontoAB
36 14 35 pm2.61dane AVBWABBA:AB1-1 ontoAB