| Step |
Hyp |
Ref |
Expression |
| 1 |
|
f1osng |
|- ( ( A e. V /\ A e. V ) -> { <. A , A >. } : { A } -1-1-onto-> { A } ) |
| 2 |
1
|
anidms |
|- ( A e. V -> { <. A , A >. } : { A } -1-1-onto-> { A } ) |
| 3 |
2
|
ad2antrr |
|- ( ( ( A e. V /\ B e. W ) /\ A = B ) -> { <. A , A >. } : { A } -1-1-onto-> { A } ) |
| 4 |
|
dfsn2 |
|- { <. A , A >. } = { <. A , A >. , <. A , A >. } |
| 5 |
|
opeq2 |
|- ( A = B -> <. A , A >. = <. A , B >. ) |
| 6 |
|
opeq1 |
|- ( A = B -> <. A , A >. = <. B , A >. ) |
| 7 |
5 6
|
preq12d |
|- ( A = B -> { <. A , A >. , <. A , A >. } = { <. A , B >. , <. B , A >. } ) |
| 8 |
4 7
|
eqtrid |
|- ( A = B -> { <. A , A >. } = { <. A , B >. , <. B , A >. } ) |
| 9 |
|
dfsn2 |
|- { A } = { A , A } |
| 10 |
|
preq2 |
|- ( A = B -> { A , A } = { A , B } ) |
| 11 |
9 10
|
eqtrid |
|- ( A = B -> { A } = { A , B } ) |
| 12 |
8 11 11
|
f1oeq123d |
|- ( A = B -> ( { <. A , A >. } : { A } -1-1-onto-> { A } <-> { <. A , B >. , <. B , A >. } : { A , B } -1-1-onto-> { A , B } ) ) |
| 13 |
12
|
adantl |
|- ( ( ( A e. V /\ B e. W ) /\ A = B ) -> ( { <. A , A >. } : { A } -1-1-onto-> { A } <-> { <. A , B >. , <. B , A >. } : { A , B } -1-1-onto-> { A , B } ) ) |
| 14 |
3 13
|
mpbid |
|- ( ( ( A e. V /\ B e. W ) /\ A = B ) -> { <. A , B >. , <. B , A >. } : { A , B } -1-1-onto-> { A , B } ) |
| 15 |
|
simpll |
|- ( ( ( A e. V /\ B e. W ) /\ A =/= B ) -> A e. V ) |
| 16 |
|
simplr |
|- ( ( ( A e. V /\ B e. W ) /\ A =/= B ) -> B e. W ) |
| 17 |
|
simpr |
|- ( ( ( A e. V /\ B e. W ) /\ A =/= B ) -> A =/= B ) |
| 18 |
|
fnprg |
|- ( ( ( A e. V /\ B e. W ) /\ ( B e. W /\ A e. V ) /\ A =/= B ) -> { <. A , B >. , <. B , A >. } Fn { A , B } ) |
| 19 |
15 16 16 15 17 18
|
syl221anc |
|- ( ( ( A e. V /\ B e. W ) /\ A =/= B ) -> { <. A , B >. , <. B , A >. } Fn { A , B } ) |
| 20 |
|
cnvsng |
|- ( ( A e. V /\ B e. W ) -> `' { <. A , B >. } = { <. B , A >. } ) |
| 21 |
|
cnvsng |
|- ( ( B e. W /\ A e. V ) -> `' { <. B , A >. } = { <. A , B >. } ) |
| 22 |
21
|
ancoms |
|- ( ( A e. V /\ B e. W ) -> `' { <. B , A >. } = { <. A , B >. } ) |
| 23 |
20 22
|
uneq12d |
|- ( ( A e. V /\ B e. W ) -> ( `' { <. A , B >. } u. `' { <. B , A >. } ) = ( { <. B , A >. } u. { <. A , B >. } ) ) |
| 24 |
|
uncom |
|- ( { <. B , A >. } u. { <. A , B >. } ) = ( { <. A , B >. } u. { <. B , A >. } ) |
| 25 |
23 24
|
eqtrdi |
|- ( ( A e. V /\ B e. W ) -> ( `' { <. A , B >. } u. `' { <. B , A >. } ) = ( { <. A , B >. } u. { <. B , A >. } ) ) |
| 26 |
25
|
adantr |
|- ( ( ( A e. V /\ B e. W ) /\ A =/= B ) -> ( `' { <. A , B >. } u. `' { <. B , A >. } ) = ( { <. A , B >. } u. { <. B , A >. } ) ) |
| 27 |
|
df-pr |
|- { <. A , B >. , <. B , A >. } = ( { <. A , B >. } u. { <. B , A >. } ) |
| 28 |
27
|
cnveqi |
|- `' { <. A , B >. , <. B , A >. } = `' ( { <. A , B >. } u. { <. B , A >. } ) |
| 29 |
|
cnvun |
|- `' ( { <. A , B >. } u. { <. B , A >. } ) = ( `' { <. A , B >. } u. `' { <. B , A >. } ) |
| 30 |
28 29
|
eqtri |
|- `' { <. A , B >. , <. B , A >. } = ( `' { <. A , B >. } u. `' { <. B , A >. } ) |
| 31 |
26 30 27
|
3eqtr4g |
|- ( ( ( A e. V /\ B e. W ) /\ A =/= B ) -> `' { <. A , B >. , <. B , A >. } = { <. A , B >. , <. B , A >. } ) |
| 32 |
31
|
fneq1d |
|- ( ( ( A e. V /\ B e. W ) /\ A =/= B ) -> ( `' { <. A , B >. , <. B , A >. } Fn { A , B } <-> { <. A , B >. , <. B , A >. } Fn { A , B } ) ) |
| 33 |
19 32
|
mpbird |
|- ( ( ( A e. V /\ B e. W ) /\ A =/= B ) -> `' { <. A , B >. , <. B , A >. } Fn { A , B } ) |
| 34 |
|
dff1o4 |
|- ( { <. A , B >. , <. B , A >. } : { A , B } -1-1-onto-> { A , B } <-> ( { <. A , B >. , <. B , A >. } Fn { A , B } /\ `' { <. A , B >. , <. B , A >. } Fn { A , B } ) ) |
| 35 |
19 33 34
|
sylanbrc |
|- ( ( ( A e. V /\ B e. W ) /\ A =/= B ) -> { <. A , B >. , <. B , A >. } : { A , B } -1-1-onto-> { A , B } ) |
| 36 |
14 35
|
pm2.61dane |
|- ( ( A e. V /\ B e. W ) -> { <. A , B >. , <. B , A >. } : { A , B } -1-1-onto-> { A , B } ) |