Metamath Proof Explorer


Theorem fuccoval

Description: Value of the functor category. (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Hypotheses fucco.q Q=CFuncCatD
fucco.n N=CNatD
fucco.a A=BaseC
fucco.o ·˙=compD
fucco.x ˙=compQ
fucco.f φRFNG
fucco.g φSGNH
fuccoval.f φXA
Assertion fuccoval φSFG˙HRX=SX1stFX1stGX·˙1stHXRX

Proof

Step Hyp Ref Expression
1 fucco.q Q=CFuncCatD
2 fucco.n N=CNatD
3 fucco.a A=BaseC
4 fucco.o ·˙=compD
5 fucco.x ˙=compQ
6 fucco.f φRFNG
7 fucco.g φSGNH
8 fuccoval.f φXA
9 1 2 3 4 5 6 7 fucco φSFG˙HR=xASx1stFx1stGx·˙1stHxRx
10 simpr φx=Xx=X
11 10 fveq2d φx=X1stFx=1stFX
12 10 fveq2d φx=X1stGx=1stGX
13 11 12 opeq12d φx=X1stFx1stGx=1stFX1stGX
14 10 fveq2d φx=X1stHx=1stHX
15 13 14 oveq12d φx=X1stFx1stGx·˙1stHx=1stFX1stGX·˙1stHX
16 10 fveq2d φx=XSx=SX
17 10 fveq2d φx=XRx=RX
18 15 16 17 oveq123d φx=XSx1stFx1stGx·˙1stHxRx=SX1stFX1stGX·˙1stHXRX
19 ovexd φSX1stFX1stGX·˙1stHXRXV
20 9 18 8 19 fvmptd φSFG˙HRX=SX1stFX1stGX·˙1stHXRX