Metamath Proof Explorer


Theorem fuco1

Description: The object part of the functor composition bifunctor. (Contributed by Zhi Wang, 29-Sep-2025)

Ref Expression
Hypotheses fucofval.c φ C T
fucofval.d φ D U
fucofval.e φ E V
fuco1.o No typesetting found for |- ( ph -> ( <. C , D >. o.F E ) = <. O , P >. ) with typecode |-
fuco1.w φ W = D Func E × C Func D
Assertion fuco1 φ O = func W

Proof

Step Hyp Ref Expression
1 fucofval.c φ C T
2 fucofval.d φ D U
3 fucofval.e φ E V
4 fuco1.o Could not format ( ph -> ( <. C , D >. o.F E ) = <. O , P >. ) : No typesetting found for |- ( ph -> ( <. C , D >. o.F E ) = <. O , P >. ) with typecode |-
5 fuco1.w φ W = D Func E × C Func D
6 1 2 3 4 5 fucofval φ O P = func W u W , v W 1 st 2 nd u / f 1 st 1 st u / k 2 nd 1 st u / l 1 st 2 nd v / m 1 st 1 st v / r b 1 st u D Nat E 1 st v , a 2 nd u C Nat D 2 nd v x Base C b m x k f x k m x comp E r m x f x l m x a x
7 1 2 3 4 fucoelvv φ O P V × V
8 opelxp1 O P V × V O V
9 7 8 syl φ O V
10 opelxp2 O P V × V P V
11 7 10 syl φ P V
12 opth1g O V P V O P = func W u W , v W 1 st 2 nd u / f 1 st 1 st u / k 2 nd 1 st u / l 1 st 2 nd v / m 1 st 1 st v / r b 1 st u D Nat E 1 st v , a 2 nd u C Nat D 2 nd v x Base C b m x k f x k m x comp E r m x f x l m x a x O = func W
13 9 11 12 syl2anc φ O P = func W u W , v W 1 st 2 nd u / f 1 st 1 st u / k 2 nd 1 st u / l 1 st 2 nd v / m 1 st 1 st v / r b 1 st u D Nat E 1 st v , a 2 nd u C Nat D 2 nd v x Base C b m x k f x k m x comp E r m x f x l m x a x O = func W
14 6 13 mpd φ O = func W