Metamath Proof Explorer


Theorem fuco112x

Description: The object part of the functor composition bifunctor maps two functors to their composition, expressed explicitly for the morphism part of the composed functor. (Contributed by Zhi Wang, 3-Oct-2025)

Ref Expression
Hypotheses fuco11.o No typesetting found for |- ( ph -> ( <. C , D >. o.F E ) = <. O , P >. ) with typecode |-
fuco11.f φ F C Func D G
fuco11.k φ K D Func E L
fuco11.u φ U = K L F G
fuco111x.x φ X Base C
fuco112x.y φ Y Base C
Assertion fuco112x φ X 2 nd O U Y = F X L F Y X G Y

Proof

Step Hyp Ref Expression
1 fuco11.o Could not format ( ph -> ( <. C , D >. o.F E ) = <. O , P >. ) : No typesetting found for |- ( ph -> ( <. C , D >. o.F E ) = <. O , P >. ) with typecode |-
2 fuco11.f φ F C Func D G
3 fuco11.k φ K D Func E L
4 fuco11.u φ U = K L F G
5 fuco111x.x φ X Base C
6 fuco112x.y φ Y Base C
7 eqid Base C = Base C
8 1 2 3 4 7 fuco112 φ 2 nd O U = x Base C , y Base C F x L F y x G y
9 simprl φ x = X y = Y x = X
10 9 fveq2d φ x = X y = Y F x = F X
11 simprr φ x = X y = Y y = Y
12 11 fveq2d φ x = X y = Y F y = F Y
13 10 12 oveq12d φ x = X y = Y F x L F y = F X L F Y
14 9 11 oveq12d φ x = X y = Y x G y = X G Y
15 13 14 coeq12d φ x = X y = Y F x L F y x G y = F X L F Y X G Y
16 ovexd φ F X L F Y V
17 ovexd φ X G Y V
18 16 17 coexd φ F X L F Y X G Y V
19 8 15 5 6 18 ovmpod φ X 2 nd O U Y = F X L F Y X G Y