Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Zhi Wang
Categories
Functor composition bifunctors
fuco2eld3
Next ⟩
cfuco
Metamath Proof Explorer
Ascii
Unicode
Theorem
fuco2eld3
Description:
Equivalence of product functor.
(Contributed by
Zhi Wang
, 29-Sep-2025)
Ref
Expression
Hypotheses
fuco2eld.w
⊢
φ
→
W
=
S
×
R
fuco2eld2.u
⊢
φ
→
U
∈
W
fuco2eld2.s
⊢
Rel
⁡
S
fuco2eld2.r
⊢
Rel
⁡
R
Assertion
fuco2eld3
⊢
φ
→
1
st
⁡
1
st
⁡
U
S
2
nd
⁡
1
st
⁡
U
∧
1
st
⁡
2
nd
⁡
U
R
2
nd
⁡
2
nd
⁡
U
Proof
Step
Hyp
Ref
Expression
1
fuco2eld.w
⊢
φ
→
W
=
S
×
R
2
fuco2eld2.u
⊢
φ
→
U
∈
W
3
fuco2eld2.s
⊢
Rel
⁡
S
4
fuco2eld2.r
⊢
Rel
⁡
R
5
1
2
3
4
fuco2eld2
⊢
φ
→
U
=
1
st
⁡
1
st
⁡
U
2
nd
⁡
1
st
⁡
U
1
st
⁡
2
nd
⁡
U
2
nd
⁡
2
nd
⁡
U
6
2
5
1
3eltr3d
⊢
φ
→
1
st
⁡
1
st
⁡
U
2
nd
⁡
1
st
⁡
U
1
st
⁡
2
nd
⁡
U
2
nd
⁡
2
nd
⁡
U
∈
S
×
R
7
fuco2el
⊢
1
st
⁡
1
st
⁡
U
2
nd
⁡
1
st
⁡
U
1
st
⁡
2
nd
⁡
U
2
nd
⁡
2
nd
⁡
U
∈
S
×
R
↔
1
st
⁡
1
st
⁡
U
S
2
nd
⁡
1
st
⁡
U
∧
1
st
⁡
2
nd
⁡
U
R
2
nd
⁡
2
nd
⁡
U
8
6
7
sylib
⊢
φ
→
1
st
⁡
1
st
⁡
U
S
2
nd
⁡
1
st
⁡
U
∧
1
st
⁡
2
nd
⁡
U
R
2
nd
⁡
2
nd
⁡
U