Metamath Proof Explorer


Theorem fuco2eld3

Description: Equivalence of product functor. (Contributed by Zhi Wang, 29-Sep-2025)

Ref Expression
Hypotheses fuco2eld.w φ W = S × R
fuco2eld2.u φ U W
fuco2eld2.s Rel S
fuco2eld2.r Rel R
Assertion fuco2eld3 φ 1 st 1 st U S 2 nd 1 st U 1 st 2 nd U R 2 nd 2 nd U

Proof

Step Hyp Ref Expression
1 fuco2eld.w φ W = S × R
2 fuco2eld2.u φ U W
3 fuco2eld2.s Rel S
4 fuco2eld2.r Rel R
5 1 2 3 4 fuco2eld2 φ U = 1 st 1 st U 2 nd 1 st U 1 st 2 nd U 2 nd 2 nd U
6 2 5 1 3eltr3d φ 1 st 1 st U 2 nd 1 st U 1 st 2 nd U 2 nd 2 nd U S × R
7 fuco2el 1 st 1 st U 2 nd 1 st U 1 st 2 nd U 2 nd 2 nd U S × R 1 st 1 st U S 2 nd 1 st U 1 st 2 nd U R 2 nd 2 nd U
8 6 7 sylib φ 1 st 1 st U S 2 nd 1 st U 1 st 2 nd U R 2 nd 2 nd U