Metamath Proof Explorer


Theorem fucoppcfunc

Description: A functor from the opposite category of functors to the category of opposite functors. (Contributed by Zhi Wang, 19-Nov-2025)

Ref Expression
Hypotheses fucoppc.o O = oppCat C
fucoppc.p P = oppCat D
fucoppc.q Q = C FuncCat D
fucoppc.r R = oppCat Q
fucoppc.s S = O FuncCat P
fucoppc.n N = C Nat D
fucoppc.f No typesetting found for |- ( ph -> F = ( oppFunc |` ( C Func D ) ) ) with typecode |-
fucoppc.g φ G = x C Func D , y C Func D I y N x
fucoppcffth.c φ C Cat
fucoppcffth.d φ D Cat
Assertion fucoppcfunc φ F R Func S G

Proof

Step Hyp Ref Expression
1 fucoppc.o O = oppCat C
2 fucoppc.p P = oppCat D
3 fucoppc.q Q = C FuncCat D
4 fucoppc.r R = oppCat Q
5 fucoppc.s S = O FuncCat P
6 fucoppc.n N = C Nat D
7 fucoppc.f Could not format ( ph -> F = ( oppFunc |` ( C Func D ) ) ) : No typesetting found for |- ( ph -> F = ( oppFunc |` ( C Func D ) ) ) with typecode |-
8 fucoppc.g φ G = x C Func D , y C Func D I y N x
9 fucoppcffth.c φ C Cat
10 fucoppcffth.d φ D Cat
11 1 2 3 4 5 6 7 8 9 10 fucoppcffth φ F R Full S R Faith S G
12 inss1 R Full S R Faith S R Full S
13 fullfunc R Full S R Func S
14 12 13 sstri R Full S R Faith S R Func S
15 14 ssbri F R Full S R Faith S G F R Func S G
16 11 15 syl φ F R Func S G