Metamath Proof Explorer


Theorem fucoppcfunc

Description: A functor from the opposite category of functors to the category of opposite functors. (Contributed by Zhi Wang, 19-Nov-2025)

Ref Expression
Hypotheses fucoppc.o
|- O = ( oppCat ` C )
fucoppc.p
|- P = ( oppCat ` D )
fucoppc.q
|- Q = ( C FuncCat D )
fucoppc.r
|- R = ( oppCat ` Q )
fucoppc.s
|- S = ( O FuncCat P )
fucoppc.n
|- N = ( C Nat D )
fucoppc.f
|- ( ph -> F = ( oppFunc |` ( C Func D ) ) )
fucoppc.g
|- ( ph -> G = ( x e. ( C Func D ) , y e. ( C Func D ) |-> ( _I |` ( y N x ) ) ) )
fucoppcffth.c
|- ( ph -> C e. Cat )
fucoppcffth.d
|- ( ph -> D e. Cat )
Assertion fucoppcfunc
|- ( ph -> F ( R Func S ) G )

Proof

Step Hyp Ref Expression
1 fucoppc.o
 |-  O = ( oppCat ` C )
2 fucoppc.p
 |-  P = ( oppCat ` D )
3 fucoppc.q
 |-  Q = ( C FuncCat D )
4 fucoppc.r
 |-  R = ( oppCat ` Q )
5 fucoppc.s
 |-  S = ( O FuncCat P )
6 fucoppc.n
 |-  N = ( C Nat D )
7 fucoppc.f
 |-  ( ph -> F = ( oppFunc |` ( C Func D ) ) )
8 fucoppc.g
 |-  ( ph -> G = ( x e. ( C Func D ) , y e. ( C Func D ) |-> ( _I |` ( y N x ) ) ) )
9 fucoppcffth.c
 |-  ( ph -> C e. Cat )
10 fucoppcffth.d
 |-  ( ph -> D e. Cat )
11 1 2 3 4 5 6 7 8 9 10 fucoppcffth
 |-  ( ph -> F ( ( R Full S ) i^i ( R Faith S ) ) G )
12 inss1
 |-  ( ( R Full S ) i^i ( R Faith S ) ) C_ ( R Full S )
13 fullfunc
 |-  ( R Full S ) C_ ( R Func S )
14 12 13 sstri
 |-  ( ( R Full S ) i^i ( R Faith S ) ) C_ ( R Func S )
15 14 ssbri
 |-  ( F ( ( R Full S ) i^i ( R Faith S ) ) G -> F ( R Func S ) G )
16 11 15 syl
 |-  ( ph -> F ( R Func S ) G )