| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fucoppc.o |
|- O = ( oppCat ` C ) |
| 2 |
|
fucoppc.p |
|- P = ( oppCat ` D ) |
| 3 |
|
fucoppc.q |
|- Q = ( C FuncCat D ) |
| 4 |
|
fucoppc.r |
|- R = ( oppCat ` Q ) |
| 5 |
|
fucoppc.s |
|- S = ( O FuncCat P ) |
| 6 |
|
fucoppc.n |
|- N = ( C Nat D ) |
| 7 |
|
fucoppc.f |
|- ( ph -> F = ( oppFunc |` ( C Func D ) ) ) |
| 8 |
|
fucoppc.g |
|- ( ph -> G = ( x e. ( C Func D ) , y e. ( C Func D ) |-> ( _I |` ( y N x ) ) ) ) |
| 9 |
|
fucoppcffth.c |
|- ( ph -> C e. Cat ) |
| 10 |
|
fucoppcffth.d |
|- ( ph -> D e. Cat ) |
| 11 |
1 2 3 4 5 6 7 8 9 10
|
fucoppcffth |
|- ( ph -> F ( ( R Full S ) i^i ( R Faith S ) ) G ) |
| 12 |
|
inss1 |
|- ( ( R Full S ) i^i ( R Faith S ) ) C_ ( R Full S ) |
| 13 |
|
fullfunc |
|- ( R Full S ) C_ ( R Func S ) |
| 14 |
12 13
|
sstri |
|- ( ( R Full S ) i^i ( R Faith S ) ) C_ ( R Func S ) |
| 15 |
14
|
ssbri |
|- ( F ( ( R Full S ) i^i ( R Faith S ) ) G -> F ( R Func S ) G ) |
| 16 |
11 15
|
syl |
|- ( ph -> F ( R Func S ) G ) |