| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fucoppc.o |
⊢ 𝑂 = ( oppCat ‘ 𝐶 ) |
| 2 |
|
fucoppc.p |
⊢ 𝑃 = ( oppCat ‘ 𝐷 ) |
| 3 |
|
fucoppc.q |
⊢ 𝑄 = ( 𝐶 FuncCat 𝐷 ) |
| 4 |
|
fucoppc.r |
⊢ 𝑅 = ( oppCat ‘ 𝑄 ) |
| 5 |
|
fucoppc.s |
⊢ 𝑆 = ( 𝑂 FuncCat 𝑃 ) |
| 6 |
|
fucoppc.n |
⊢ 𝑁 = ( 𝐶 Nat 𝐷 ) |
| 7 |
|
fucoppc.f |
⊢ ( 𝜑 → 𝐹 = ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) ) |
| 8 |
|
fucoppc.g |
⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ ( 𝐶 Func 𝐷 ) , 𝑦 ∈ ( 𝐶 Func 𝐷 ) ↦ ( I ↾ ( 𝑦 𝑁 𝑥 ) ) ) ) |
| 9 |
|
fucoppcffth.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 10 |
|
fucoppcffth.d |
⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
| 11 |
1 2 3 4 5 6 7 8 9 10
|
fucoppcffth |
⊢ ( 𝜑 → 𝐹 ( ( 𝑅 Full 𝑆 ) ∩ ( 𝑅 Faith 𝑆 ) ) 𝐺 ) |
| 12 |
|
inss1 |
⊢ ( ( 𝑅 Full 𝑆 ) ∩ ( 𝑅 Faith 𝑆 ) ) ⊆ ( 𝑅 Full 𝑆 ) |
| 13 |
|
fullfunc |
⊢ ( 𝑅 Full 𝑆 ) ⊆ ( 𝑅 Func 𝑆 ) |
| 14 |
12 13
|
sstri |
⊢ ( ( 𝑅 Full 𝑆 ) ∩ ( 𝑅 Faith 𝑆 ) ) ⊆ ( 𝑅 Func 𝑆 ) |
| 15 |
14
|
ssbri |
⊢ ( 𝐹 ( ( 𝑅 Full 𝑆 ) ∩ ( 𝑅 Faith 𝑆 ) ) 𝐺 → 𝐹 ( 𝑅 Func 𝑆 ) 𝐺 ) |
| 16 |
11 15
|
syl |
⊢ ( 𝜑 → 𝐹 ( 𝑅 Func 𝑆 ) 𝐺 ) |