| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fucoppc.o |
⊢ 𝑂 = ( oppCat ‘ 𝐶 ) |
| 2 |
|
fucoppc.p |
⊢ 𝑃 = ( oppCat ‘ 𝐷 ) |
| 3 |
|
fucoppc.q |
⊢ 𝑄 = ( 𝐶 FuncCat 𝐷 ) |
| 4 |
|
fucoppc.r |
⊢ 𝑅 = ( oppCat ‘ 𝑄 ) |
| 5 |
|
fucoppc.s |
⊢ 𝑆 = ( 𝑂 FuncCat 𝑃 ) |
| 6 |
|
fucoppc.n |
⊢ 𝑁 = ( 𝐶 Nat 𝐷 ) |
| 7 |
|
fucoppc.f |
⊢ ( 𝜑 → 𝐹 = ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) ) |
| 8 |
|
fucoppc.g |
⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ ( 𝐶 Func 𝐷 ) , 𝑦 ∈ ( 𝐶 Func 𝐷 ) ↦ ( I ↾ ( 𝑦 𝑁 𝑥 ) ) ) ) |
| 9 |
|
fucoppcffth.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 10 |
|
fucoppcffth.d |
⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
| 11 |
|
eqid |
⊢ ( CatCat ‘ { 𝑅 , 𝑆 } ) = ( CatCat ‘ { 𝑅 , 𝑆 } ) |
| 12 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 13 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
| 14 |
|
eqid |
⊢ ( Iso ‘ ( CatCat ‘ { 𝑅 , 𝑆 } ) ) = ( Iso ‘ ( CatCat ‘ { 𝑅 , 𝑆 } ) ) |
| 15 |
|
eqid |
⊢ ( Base ‘ ( CatCat ‘ { 𝑅 , 𝑆 } ) ) = ( Base ‘ ( CatCat ‘ { 𝑅 , 𝑆 } ) ) |
| 16 |
3 9 10
|
fuccat |
⊢ ( 𝜑 → 𝑄 ∈ Cat ) |
| 17 |
4
|
oppccat |
⊢ ( 𝑄 ∈ Cat → 𝑅 ∈ Cat ) |
| 18 |
16 17
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Cat ) |
| 19 |
|
prid1g |
⊢ ( 𝑅 ∈ Cat → 𝑅 ∈ { 𝑅 , 𝑆 } ) |
| 20 |
18 19
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ { 𝑅 , 𝑆 } ) |
| 21 |
20 18
|
elind |
⊢ ( 𝜑 → 𝑅 ∈ ( { 𝑅 , 𝑆 } ∩ Cat ) ) |
| 22 |
|
prex |
⊢ { 𝑅 , 𝑆 } ∈ V |
| 23 |
22
|
a1i |
⊢ ( 𝜑 → { 𝑅 , 𝑆 } ∈ V ) |
| 24 |
11 15 23
|
catcbas |
⊢ ( 𝜑 → ( Base ‘ ( CatCat ‘ { 𝑅 , 𝑆 } ) ) = ( { 𝑅 , 𝑆 } ∩ Cat ) ) |
| 25 |
21 24
|
eleqtrrd |
⊢ ( 𝜑 → 𝑅 ∈ ( Base ‘ ( CatCat ‘ { 𝑅 , 𝑆 } ) ) ) |
| 26 |
1
|
oppccat |
⊢ ( 𝐶 ∈ Cat → 𝑂 ∈ Cat ) |
| 27 |
9 26
|
syl |
⊢ ( 𝜑 → 𝑂 ∈ Cat ) |
| 28 |
2
|
oppccat |
⊢ ( 𝐷 ∈ Cat → 𝑃 ∈ Cat ) |
| 29 |
10 28
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ Cat ) |
| 30 |
5 27 29
|
fuccat |
⊢ ( 𝜑 → 𝑆 ∈ Cat ) |
| 31 |
|
prid2g |
⊢ ( 𝑆 ∈ Cat → 𝑆 ∈ { 𝑅 , 𝑆 } ) |
| 32 |
30 31
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ { 𝑅 , 𝑆 } ) |
| 33 |
32 30
|
elind |
⊢ ( 𝜑 → 𝑆 ∈ ( { 𝑅 , 𝑆 } ∩ Cat ) ) |
| 34 |
33 24
|
eleqtrrd |
⊢ ( 𝜑 → 𝑆 ∈ ( Base ‘ ( CatCat ‘ { 𝑅 , 𝑆 } ) ) ) |
| 35 |
1 2 3 4 5 6 7 8 11 15 14 9 10 25 34
|
fucoppc |
⊢ ( 𝜑 → 𝐹 ( 𝑅 ( Iso ‘ ( CatCat ‘ { 𝑅 , 𝑆 } ) ) 𝑆 ) 𝐺 ) |
| 36 |
|
df-br |
⊢ ( 𝐹 ( 𝑅 ( Iso ‘ ( CatCat ‘ { 𝑅 , 𝑆 } ) ) 𝑆 ) 𝐺 ↔ 〈 𝐹 , 𝐺 〉 ∈ ( 𝑅 ( Iso ‘ ( CatCat ‘ { 𝑅 , 𝑆 } ) ) 𝑆 ) ) |
| 37 |
35 36
|
sylib |
⊢ ( 𝜑 → 〈 𝐹 , 𝐺 〉 ∈ ( 𝑅 ( Iso ‘ ( CatCat ‘ { 𝑅 , 𝑆 } ) ) 𝑆 ) ) |
| 38 |
11 12 13 14 37
|
catcisoi |
⊢ ( 𝜑 → ( 〈 𝐹 , 𝐺 〉 ∈ ( ( 𝑅 Full 𝑆 ) ∩ ( 𝑅 Faith 𝑆 ) ) ∧ ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) : ( Base ‘ 𝑅 ) –1-1-onto→ ( Base ‘ 𝑆 ) ) ) |
| 39 |
38
|
simpld |
⊢ ( 𝜑 → 〈 𝐹 , 𝐺 〉 ∈ ( ( 𝑅 Full 𝑆 ) ∩ ( 𝑅 Faith 𝑆 ) ) ) |
| 40 |
|
df-br |
⊢ ( 𝐹 ( ( 𝑅 Full 𝑆 ) ∩ ( 𝑅 Faith 𝑆 ) ) 𝐺 ↔ 〈 𝐹 , 𝐺 〉 ∈ ( ( 𝑅 Full 𝑆 ) ∩ ( 𝑅 Faith 𝑆 ) ) ) |
| 41 |
39 40
|
sylibr |
⊢ ( 𝜑 → 𝐹 ( ( 𝑅 Full 𝑆 ) ∩ ( 𝑅 Faith 𝑆 ) ) 𝐺 ) |