| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fucoppc.o |
|- O = ( oppCat ` C ) |
| 2 |
|
fucoppc.p |
|- P = ( oppCat ` D ) |
| 3 |
|
fucoppc.q |
|- Q = ( C FuncCat D ) |
| 4 |
|
fucoppc.r |
|- R = ( oppCat ` Q ) |
| 5 |
|
fucoppc.s |
|- S = ( O FuncCat P ) |
| 6 |
|
fucoppc.n |
|- N = ( C Nat D ) |
| 7 |
|
fucoppc.f |
|- ( ph -> F = ( oppFunc |` ( C Func D ) ) ) |
| 8 |
|
fucoppc.g |
|- ( ph -> G = ( x e. ( C Func D ) , y e. ( C Func D ) |-> ( _I |` ( y N x ) ) ) ) |
| 9 |
|
fucoppcffth.c |
|- ( ph -> C e. Cat ) |
| 10 |
|
fucoppcffth.d |
|- ( ph -> D e. Cat ) |
| 11 |
|
eqid |
|- ( CatCat ` { R , S } ) = ( CatCat ` { R , S } ) |
| 12 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 13 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
| 14 |
|
eqid |
|- ( Iso ` ( CatCat ` { R , S } ) ) = ( Iso ` ( CatCat ` { R , S } ) ) |
| 15 |
|
eqid |
|- ( Base ` ( CatCat ` { R , S } ) ) = ( Base ` ( CatCat ` { R , S } ) ) |
| 16 |
3 9 10
|
fuccat |
|- ( ph -> Q e. Cat ) |
| 17 |
4
|
oppccat |
|- ( Q e. Cat -> R e. Cat ) |
| 18 |
16 17
|
syl |
|- ( ph -> R e. Cat ) |
| 19 |
|
prid1g |
|- ( R e. Cat -> R e. { R , S } ) |
| 20 |
18 19
|
syl |
|- ( ph -> R e. { R , S } ) |
| 21 |
20 18
|
elind |
|- ( ph -> R e. ( { R , S } i^i Cat ) ) |
| 22 |
|
prex |
|- { R , S } e. _V |
| 23 |
22
|
a1i |
|- ( ph -> { R , S } e. _V ) |
| 24 |
11 15 23
|
catcbas |
|- ( ph -> ( Base ` ( CatCat ` { R , S } ) ) = ( { R , S } i^i Cat ) ) |
| 25 |
21 24
|
eleqtrrd |
|- ( ph -> R e. ( Base ` ( CatCat ` { R , S } ) ) ) |
| 26 |
1
|
oppccat |
|- ( C e. Cat -> O e. Cat ) |
| 27 |
9 26
|
syl |
|- ( ph -> O e. Cat ) |
| 28 |
2
|
oppccat |
|- ( D e. Cat -> P e. Cat ) |
| 29 |
10 28
|
syl |
|- ( ph -> P e. Cat ) |
| 30 |
5 27 29
|
fuccat |
|- ( ph -> S e. Cat ) |
| 31 |
|
prid2g |
|- ( S e. Cat -> S e. { R , S } ) |
| 32 |
30 31
|
syl |
|- ( ph -> S e. { R , S } ) |
| 33 |
32 30
|
elind |
|- ( ph -> S e. ( { R , S } i^i Cat ) ) |
| 34 |
33 24
|
eleqtrrd |
|- ( ph -> S e. ( Base ` ( CatCat ` { R , S } ) ) ) |
| 35 |
1 2 3 4 5 6 7 8 11 15 14 9 10 25 34
|
fucoppc |
|- ( ph -> F ( R ( Iso ` ( CatCat ` { R , S } ) ) S ) G ) |
| 36 |
|
df-br |
|- ( F ( R ( Iso ` ( CatCat ` { R , S } ) ) S ) G <-> <. F , G >. e. ( R ( Iso ` ( CatCat ` { R , S } ) ) S ) ) |
| 37 |
35 36
|
sylib |
|- ( ph -> <. F , G >. e. ( R ( Iso ` ( CatCat ` { R , S } ) ) S ) ) |
| 38 |
11 12 13 14 37
|
catcisoi |
|- ( ph -> ( <. F , G >. e. ( ( R Full S ) i^i ( R Faith S ) ) /\ ( 1st ` <. F , G >. ) : ( Base ` R ) -1-1-onto-> ( Base ` S ) ) ) |
| 39 |
38
|
simpld |
|- ( ph -> <. F , G >. e. ( ( R Full S ) i^i ( R Faith S ) ) ) |
| 40 |
|
df-br |
|- ( F ( ( R Full S ) i^i ( R Faith S ) ) G <-> <. F , G >. e. ( ( R Full S ) i^i ( R Faith S ) ) ) |
| 41 |
39 40
|
sylibr |
|- ( ph -> F ( ( R Full S ) i^i ( R Faith S ) ) G ) |