| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fucoppc.o |
|- O = ( oppCat ` C ) |
| 2 |
|
fucoppc.p |
|- P = ( oppCat ` D ) |
| 3 |
|
fucoppc.q |
|- Q = ( C FuncCat D ) |
| 4 |
|
fucoppc.r |
|- R = ( oppCat ` Q ) |
| 5 |
|
fucoppc.s |
|- S = ( O FuncCat P ) |
| 6 |
|
fucoppc.n |
|- N = ( C Nat D ) |
| 7 |
|
fucoppc.f |
|- ( ph -> F = ( oppFunc |` ( C Func D ) ) ) |
| 8 |
|
fucoppc.g |
|- ( ph -> G = ( x e. ( C Func D ) , y e. ( C Func D ) |-> ( _I |` ( y N x ) ) ) ) |
| 9 |
|
fucoppc.t |
|- T = ( CatCat ` U ) |
| 10 |
|
fucoppc.b |
|- B = ( Base ` T ) |
| 11 |
|
fucoppc.i |
|- I = ( Iso ` T ) |
| 12 |
|
fucoppc.c |
|- ( ph -> C e. V ) |
| 13 |
|
fucoppc.d |
|- ( ph -> D e. W ) |
| 14 |
|
fucoppc.1 |
|- ( ph -> R e. B ) |
| 15 |
|
fucoppc.2 |
|- ( ph -> S e. B ) |
| 16 |
3
|
fucbas |
|- ( C Func D ) = ( Base ` Q ) |
| 17 |
4 16
|
oppcbas |
|- ( C Func D ) = ( Base ` R ) |
| 18 |
5
|
fucbas |
|- ( O Func P ) = ( Base ` S ) |
| 19 |
|
eqid |
|- ( Hom ` R ) = ( Hom ` R ) |
| 20 |
|
eqid |
|- ( O Nat P ) = ( O Nat P ) |
| 21 |
5 20
|
fuchom |
|- ( O Nat P ) = ( Hom ` S ) |
| 22 |
|
eqid |
|- ( Id ` R ) = ( Id ` R ) |
| 23 |
|
eqid |
|- ( Id ` S ) = ( Id ` S ) |
| 24 |
|
eqid |
|- ( comp ` R ) = ( comp ` R ) |
| 25 |
|
eqid |
|- ( comp ` S ) = ( comp ` S ) |
| 26 |
9 10
|
elbasfv |
|- ( R e. B -> U e. _V ) |
| 27 |
14 26
|
syl |
|- ( ph -> U e. _V ) |
| 28 |
9 10 27
|
catcbas |
|- ( ph -> B = ( U i^i Cat ) ) |
| 29 |
14 28
|
eleqtrd |
|- ( ph -> R e. ( U i^i Cat ) ) |
| 30 |
29
|
elin2d |
|- ( ph -> R e. Cat ) |
| 31 |
15 28
|
eleqtrd |
|- ( ph -> S e. ( U i^i Cat ) ) |
| 32 |
31
|
elin2d |
|- ( ph -> S e. Cat ) |
| 33 |
1 2 12 13
|
oppff1o |
|- ( ph -> ( oppFunc |` ( C Func D ) ) : ( C Func D ) -1-1-onto-> ( O Func P ) ) |
| 34 |
7
|
f1oeq1d |
|- ( ph -> ( F : ( C Func D ) -1-1-onto-> ( O Func P ) <-> ( oppFunc |` ( C Func D ) ) : ( C Func D ) -1-1-onto-> ( O Func P ) ) ) |
| 35 |
33 34
|
mpbird |
|- ( ph -> F : ( C Func D ) -1-1-onto-> ( O Func P ) ) |
| 36 |
|
f1of |
|- ( F : ( C Func D ) -1-1-onto-> ( O Func P ) -> F : ( C Func D ) --> ( O Func P ) ) |
| 37 |
35 36
|
syl |
|- ( ph -> F : ( C Func D ) --> ( O Func P ) ) |
| 38 |
|
eqid |
|- ( x e. ( C Func D ) , y e. ( C Func D ) |-> ( _I |` ( y N x ) ) ) = ( x e. ( C Func D ) , y e. ( C Func D ) |-> ( _I |` ( y N x ) ) ) |
| 39 |
|
ovex |
|- ( y N x ) e. _V |
| 40 |
|
resiexg |
|- ( ( y N x ) e. _V -> ( _I |` ( y N x ) ) e. _V ) |
| 41 |
39 40
|
ax-mp |
|- ( _I |` ( y N x ) ) e. _V |
| 42 |
38 41
|
fnmpoi |
|- ( x e. ( C Func D ) , y e. ( C Func D ) |-> ( _I |` ( y N x ) ) ) Fn ( ( C Func D ) X. ( C Func D ) ) |
| 43 |
8
|
fneq1d |
|- ( ph -> ( G Fn ( ( C Func D ) X. ( C Func D ) ) <-> ( x e. ( C Func D ) , y e. ( C Func D ) |-> ( _I |` ( y N x ) ) ) Fn ( ( C Func D ) X. ( C Func D ) ) ) ) |
| 44 |
42 43
|
mpbiri |
|- ( ph -> G Fn ( ( C Func D ) X. ( C Func D ) ) ) |
| 45 |
|
f1oi |
|- ( _I |` ( g N f ) ) : ( g N f ) -1-1-onto-> ( g N f ) |
| 46 |
8
|
adantr |
|- ( ( ph /\ ( f e. ( C Func D ) /\ g e. ( C Func D ) ) ) -> G = ( x e. ( C Func D ) , y e. ( C Func D ) |-> ( _I |` ( y N x ) ) ) ) |
| 47 |
|
simprl |
|- ( ( ph /\ ( f e. ( C Func D ) /\ g e. ( C Func D ) ) ) -> f e. ( C Func D ) ) |
| 48 |
|
simprr |
|- ( ( ph /\ ( f e. ( C Func D ) /\ g e. ( C Func D ) ) ) -> g e. ( C Func D ) ) |
| 49 |
46 47 48
|
opf2fval |
|- ( ( ph /\ ( f e. ( C Func D ) /\ g e. ( C Func D ) ) ) -> ( f G g ) = ( _I |` ( g N f ) ) ) |
| 50 |
3 6
|
fuchom |
|- N = ( Hom ` Q ) |
| 51 |
50 4
|
oppchom |
|- ( f ( Hom ` R ) g ) = ( g N f ) |
| 52 |
51
|
a1i |
|- ( ( ph /\ ( f e. ( C Func D ) /\ g e. ( C Func D ) ) ) -> ( f ( Hom ` R ) g ) = ( g N f ) ) |
| 53 |
7
|
adantr |
|- ( ( ph /\ ( f e. ( C Func D ) /\ g e. ( C Func D ) ) ) -> F = ( oppFunc |` ( C Func D ) ) ) |
| 54 |
1 2 6 53 47 48
|
fucoppclem |
|- ( ( ph /\ ( f e. ( C Func D ) /\ g e. ( C Func D ) ) ) -> ( g N f ) = ( ( F ` f ) ( O Nat P ) ( F ` g ) ) ) |
| 55 |
54
|
eqcomd |
|- ( ( ph /\ ( f e. ( C Func D ) /\ g e. ( C Func D ) ) ) -> ( ( F ` f ) ( O Nat P ) ( F ` g ) ) = ( g N f ) ) |
| 56 |
49 52 55
|
f1oeq123d |
|- ( ( ph /\ ( f e. ( C Func D ) /\ g e. ( C Func D ) ) ) -> ( ( f G g ) : ( f ( Hom ` R ) g ) -1-1-onto-> ( ( F ` f ) ( O Nat P ) ( F ` g ) ) <-> ( _I |` ( g N f ) ) : ( g N f ) -1-1-onto-> ( g N f ) ) ) |
| 57 |
45 56
|
mpbiri |
|- ( ( ph /\ ( f e. ( C Func D ) /\ g e. ( C Func D ) ) ) -> ( f G g ) : ( f ( Hom ` R ) g ) -1-1-onto-> ( ( F ` f ) ( O Nat P ) ( F ` g ) ) ) |
| 58 |
|
f1of |
|- ( ( f G g ) : ( f ( Hom ` R ) g ) -1-1-onto-> ( ( F ` f ) ( O Nat P ) ( F ` g ) ) -> ( f G g ) : ( f ( Hom ` R ) g ) --> ( ( F ` f ) ( O Nat P ) ( F ` g ) ) ) |
| 59 |
57 58
|
syl |
|- ( ( ph /\ ( f e. ( C Func D ) /\ g e. ( C Func D ) ) ) -> ( f G g ) : ( f ( Hom ` R ) g ) --> ( ( F ` f ) ( O Nat P ) ( F ` g ) ) ) |
| 60 |
7
|
adantr |
|- ( ( ph /\ f e. ( C Func D ) ) -> F = ( oppFunc |` ( C Func D ) ) ) |
| 61 |
8
|
adantr |
|- ( ( ph /\ f e. ( C Func D ) ) -> G = ( x e. ( C Func D ) , y e. ( C Func D ) |-> ( _I |` ( y N x ) ) ) ) |
| 62 |
|
simpr |
|- ( ( ph /\ f e. ( C Func D ) ) -> f e. ( C Func D ) ) |
| 63 |
1 2 3 4 5 6 60 61 62
|
fucoppcid |
|- ( ( ph /\ f e. ( C Func D ) ) -> ( ( f G f ) ` ( ( Id ` R ) ` f ) ) = ( ( Id ` S ) ` ( F ` f ) ) ) |
| 64 |
7
|
3ad2ant1 |
|- ( ( ph /\ ( f e. ( C Func D ) /\ g e. ( C Func D ) /\ k e. ( C Func D ) ) /\ ( a e. ( f ( Hom ` R ) g ) /\ b e. ( g ( Hom ` R ) k ) ) ) -> F = ( oppFunc |` ( C Func D ) ) ) |
| 65 |
8
|
3ad2ant1 |
|- ( ( ph /\ ( f e. ( C Func D ) /\ g e. ( C Func D ) /\ k e. ( C Func D ) ) /\ ( a e. ( f ( Hom ` R ) g ) /\ b e. ( g ( Hom ` R ) k ) ) ) -> G = ( x e. ( C Func D ) , y e. ( C Func D ) |-> ( _I |` ( y N x ) ) ) ) |
| 66 |
|
simp3l |
|- ( ( ph /\ ( f e. ( C Func D ) /\ g e. ( C Func D ) /\ k e. ( C Func D ) ) /\ ( a e. ( f ( Hom ` R ) g ) /\ b e. ( g ( Hom ` R ) k ) ) ) -> a e. ( f ( Hom ` R ) g ) ) |
| 67 |
|
simp3r |
|- ( ( ph /\ ( f e. ( C Func D ) /\ g e. ( C Func D ) /\ k e. ( C Func D ) ) /\ ( a e. ( f ( Hom ` R ) g ) /\ b e. ( g ( Hom ` R ) k ) ) ) -> b e. ( g ( Hom ` R ) k ) ) |
| 68 |
1 2 3 4 5 6 64 65 66 67
|
fucoppcco |
|- ( ( ph /\ ( f e. ( C Func D ) /\ g e. ( C Func D ) /\ k e. ( C Func D ) ) /\ ( a e. ( f ( Hom ` R ) g ) /\ b e. ( g ( Hom ` R ) k ) ) ) -> ( ( f G k ) ` ( b ( <. f , g >. ( comp ` R ) k ) a ) ) = ( ( ( g G k ) ` b ) ( <. ( F ` f ) , ( F ` g ) >. ( comp ` S ) ( F ` k ) ) ( ( f G g ) ` a ) ) ) |
| 69 |
17 18 19 21 22 23 24 25 30 32 37 44 59 63 68
|
isfuncd |
|- ( ph -> F ( R Func S ) G ) |
| 70 |
57
|
ralrimivva |
|- ( ph -> A. f e. ( C Func D ) A. g e. ( C Func D ) ( f G g ) : ( f ( Hom ` R ) g ) -1-1-onto-> ( ( F ` f ) ( O Nat P ) ( F ` g ) ) ) |
| 71 |
17 19 21
|
isffth2 |
|- ( F ( ( R Full S ) i^i ( R Faith S ) ) G <-> ( F ( R Func S ) G /\ A. f e. ( C Func D ) A. g e. ( C Func D ) ( f G g ) : ( f ( Hom ` R ) g ) -1-1-onto-> ( ( F ` f ) ( O Nat P ) ( F ` g ) ) ) ) |
| 72 |
69 70 71
|
sylanbrc |
|- ( ph -> F ( ( R Full S ) i^i ( R Faith S ) ) G ) |
| 73 |
|
df-br |
|- ( F ( ( R Full S ) i^i ( R Faith S ) ) G <-> <. F , G >. e. ( ( R Full S ) i^i ( R Faith S ) ) ) |
| 74 |
72 73
|
sylib |
|- ( ph -> <. F , G >. e. ( ( R Full S ) i^i ( R Faith S ) ) ) |
| 75 |
69
|
func1st |
|- ( ph -> ( 1st ` <. F , G >. ) = F ) |
| 76 |
75
|
f1oeq1d |
|- ( ph -> ( ( 1st ` <. F , G >. ) : ( C Func D ) -1-1-onto-> ( O Func P ) <-> F : ( C Func D ) -1-1-onto-> ( O Func P ) ) ) |
| 77 |
35 76
|
mpbird |
|- ( ph -> ( 1st ` <. F , G >. ) : ( C Func D ) -1-1-onto-> ( O Func P ) ) |
| 78 |
9 10 17 18 27 14 15 11
|
catciso |
|- ( ph -> ( <. F , G >. e. ( R I S ) <-> ( <. F , G >. e. ( ( R Full S ) i^i ( R Faith S ) ) /\ ( 1st ` <. F , G >. ) : ( C Func D ) -1-1-onto-> ( O Func P ) ) ) ) |
| 79 |
74 77 78
|
mpbir2and |
|- ( ph -> <. F , G >. e. ( R I S ) ) |
| 80 |
|
df-br |
|- ( F ( R I S ) G <-> <. F , G >. e. ( R I S ) ) |
| 81 |
79 80
|
sylibr |
|- ( ph -> F ( R I S ) G ) |