| Step |
Hyp |
Ref |
Expression |
| 1 |
|
opf2fval.f |
|- ( ph -> F = ( x e. A , y e. B |-> ( _I |` ( y N x ) ) ) ) |
| 2 |
|
opf2fval.x |
|- ( ph -> X e. A ) |
| 3 |
|
opf2fval.y |
|- ( ph -> Y e. B ) |
| 4 |
|
simprr |
|- ( ( ph /\ ( x = X /\ y = Y ) ) -> y = Y ) |
| 5 |
|
simprl |
|- ( ( ph /\ ( x = X /\ y = Y ) ) -> x = X ) |
| 6 |
4 5
|
oveq12d |
|- ( ( ph /\ ( x = X /\ y = Y ) ) -> ( y N x ) = ( Y N X ) ) |
| 7 |
6
|
reseq2d |
|- ( ( ph /\ ( x = X /\ y = Y ) ) -> ( _I |` ( y N x ) ) = ( _I |` ( Y N X ) ) ) |
| 8 |
|
ovexd |
|- ( ph -> ( Y N X ) e. _V ) |
| 9 |
|
resiexg |
|- ( ( Y N X ) e. _V -> ( _I |` ( Y N X ) ) e. _V ) |
| 10 |
8 9
|
syl |
|- ( ph -> ( _I |` ( Y N X ) ) e. _V ) |
| 11 |
1 7 2 3 10
|
ovmpod |
|- ( ph -> ( X F Y ) = ( _I |` ( Y N X ) ) ) |