| Step |
Hyp |
Ref |
Expression |
| 1 |
|
opf2fval.f |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ ( I ↾ ( 𝑦 𝑁 𝑥 ) ) ) ) |
| 2 |
|
opf2fval.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) |
| 3 |
|
opf2fval.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
| 4 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → 𝑦 = 𝑌 ) |
| 5 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → 𝑥 = 𝑋 ) |
| 6 |
4 5
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → ( 𝑦 𝑁 𝑥 ) = ( 𝑌 𝑁 𝑋 ) ) |
| 7 |
6
|
reseq2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → ( I ↾ ( 𝑦 𝑁 𝑥 ) ) = ( I ↾ ( 𝑌 𝑁 𝑋 ) ) ) |
| 8 |
|
ovexd |
⊢ ( 𝜑 → ( 𝑌 𝑁 𝑋 ) ∈ V ) |
| 9 |
|
resiexg |
⊢ ( ( 𝑌 𝑁 𝑋 ) ∈ V → ( I ↾ ( 𝑌 𝑁 𝑋 ) ) ∈ V ) |
| 10 |
8 9
|
syl |
⊢ ( 𝜑 → ( I ↾ ( 𝑌 𝑁 𝑋 ) ) ∈ V ) |
| 11 |
1 7 2 3 10
|
ovmpod |
⊢ ( 𝜑 → ( 𝑋 𝐹 𝑌 ) = ( I ↾ ( 𝑌 𝑁 𝑋 ) ) ) |