Description: The morphism part of the op functor on functor categories. Lemma for fucoppc . (Contributed by Zhi Wang, 18-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opf2fval.f | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ ( I ↾ ( 𝑦 𝑁 𝑥 ) ) ) ) | |
| opf2fval.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) | ||
| opf2fval.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| opf2.c | ⊢ ( 𝜑 → 𝐶 = 𝐷 ) | ||
| opf2.d | ⊢ ( 𝜑 → 𝐷 ∈ ( 𝑌 𝑁 𝑋 ) ) | ||
| Assertion | opf2 | ⊢ ( 𝜑 → ( ( 𝑋 𝐹 𝑌 ) ‘ 𝐶 ) = 𝐷 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opf2fval.f | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ ( I ↾ ( 𝑦 𝑁 𝑥 ) ) ) ) | |
| 2 | opf2fval.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) | |
| 3 | opf2fval.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 4 | opf2.c | ⊢ ( 𝜑 → 𝐶 = 𝐷 ) | |
| 5 | opf2.d | ⊢ ( 𝜑 → 𝐷 ∈ ( 𝑌 𝑁 𝑋 ) ) | |
| 6 | 1 2 3 | opf2fval | ⊢ ( 𝜑 → ( 𝑋 𝐹 𝑌 ) = ( I ↾ ( 𝑌 𝑁 𝑋 ) ) ) |
| 7 | 6 4 | fveq12d | ⊢ ( 𝜑 → ( ( 𝑋 𝐹 𝑌 ) ‘ 𝐶 ) = ( ( I ↾ ( 𝑌 𝑁 𝑋 ) ) ‘ 𝐷 ) ) |
| 8 | fvresi | ⊢ ( 𝐷 ∈ ( 𝑌 𝑁 𝑋 ) → ( ( I ↾ ( 𝑌 𝑁 𝑋 ) ) ‘ 𝐷 ) = 𝐷 ) | |
| 9 | 5 8 | syl | ⊢ ( 𝜑 → ( ( I ↾ ( 𝑌 𝑁 𝑋 ) ) ‘ 𝐷 ) = 𝐷 ) |
| 10 | 7 9 | eqtrd | ⊢ ( 𝜑 → ( ( 𝑋 𝐹 𝑌 ) ‘ 𝐶 ) = 𝐷 ) |