Metamath Proof Explorer


Theorem fucoppclem

Description: Lemma for fucoppc . (Contributed by Zhi Wang, 18-Nov-2025)

Ref Expression
Hypotheses fucoppclem.o 𝑂 = ( oppCat ‘ 𝐶 )
fucoppclem.p 𝑃 = ( oppCat ‘ 𝐷 )
fucoppclem.n 𝑁 = ( 𝐶 Nat 𝐷 )
fucoppclem.f ( 𝜑𝐹 = ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) )
fucoppclem.x ( 𝜑𝑋 ∈ ( 𝐶 Func 𝐷 ) )
fucoppclem.y ( 𝜑𝑌 ∈ ( 𝐶 Func 𝐷 ) )
Assertion fucoppclem ( 𝜑 → ( 𝑌 𝑁 𝑋 ) = ( ( 𝐹𝑋 ) ( 𝑂 Nat 𝑃 ) ( 𝐹𝑌 ) ) )

Proof

Step Hyp Ref Expression
1 fucoppclem.o 𝑂 = ( oppCat ‘ 𝐶 )
2 fucoppclem.p 𝑃 = ( oppCat ‘ 𝐷 )
3 fucoppclem.n 𝑁 = ( 𝐶 Nat 𝐷 )
4 fucoppclem.f ( 𝜑𝐹 = ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) )
5 fucoppclem.x ( 𝜑𝑋 ∈ ( 𝐶 Func 𝐷 ) )
6 fucoppclem.y ( 𝜑𝑌 ∈ ( 𝐶 Func 𝐷 ) )
7 eqid ( 𝑂 Nat 𝑃 ) = ( 𝑂 Nat 𝑃 )
8 4 fveq1d ( 𝜑 → ( 𝐹𝑌 ) = ( ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) ‘ 𝑌 ) )
9 6 fvresd ( 𝜑 → ( ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) ‘ 𝑌 ) = ( oppFunc ‘ 𝑌 ) )
10 8 9 eqtrd ( 𝜑 → ( 𝐹𝑌 ) = ( oppFunc ‘ 𝑌 ) )
11 4 fveq1d ( 𝜑 → ( 𝐹𝑋 ) = ( ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) ‘ 𝑋 ) )
12 5 fvresd ( 𝜑 → ( ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) ‘ 𝑋 ) = ( oppFunc ‘ 𝑋 ) )
13 11 12 eqtrd ( 𝜑 → ( 𝐹𝑋 ) = ( oppFunc ‘ 𝑋 ) )
14 5 func1st2nd ( 𝜑 → ( 1st𝑋 ) ( 𝐶 Func 𝐷 ) ( 2nd𝑋 ) )
15 14 funcrcl2 ( 𝜑𝐶 ∈ Cat )
16 14 funcrcl3 ( 𝜑𝐷 ∈ Cat )
17 1 2 3 7 10 13 15 16 natoppfb ( 𝜑 → ( 𝑌 𝑁 𝑋 ) = ( ( 𝐹𝑋 ) ( 𝑂 Nat 𝑃 ) ( 𝐹𝑌 ) ) )