| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fucoppclem.o |
⊢ 𝑂 = ( oppCat ‘ 𝐶 ) |
| 2 |
|
fucoppclem.p |
⊢ 𝑃 = ( oppCat ‘ 𝐷 ) |
| 3 |
|
fucoppclem.n |
⊢ 𝑁 = ( 𝐶 Nat 𝐷 ) |
| 4 |
|
fucoppclem.f |
⊢ ( 𝜑 → 𝐹 = ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) ) |
| 5 |
|
fucoppclem.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐶 Func 𝐷 ) ) |
| 6 |
|
fucoppclem.y |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝐶 Func 𝐷 ) ) |
| 7 |
|
eqid |
⊢ ( 𝑂 Nat 𝑃 ) = ( 𝑂 Nat 𝑃 ) |
| 8 |
4
|
fveq1d |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑌 ) = ( ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) ‘ 𝑌 ) ) |
| 9 |
6
|
fvresd |
⊢ ( 𝜑 → ( ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) ‘ 𝑌 ) = ( oppFunc ‘ 𝑌 ) ) |
| 10 |
8 9
|
eqtrd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑌 ) = ( oppFunc ‘ 𝑌 ) ) |
| 11 |
4
|
fveq1d |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) = ( ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) ‘ 𝑋 ) ) |
| 12 |
5
|
fvresd |
⊢ ( 𝜑 → ( ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) ‘ 𝑋 ) = ( oppFunc ‘ 𝑋 ) ) |
| 13 |
11 12
|
eqtrd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) = ( oppFunc ‘ 𝑋 ) ) |
| 14 |
5
|
func1st2nd |
⊢ ( 𝜑 → ( 1st ‘ 𝑋 ) ( 𝐶 Func 𝐷 ) ( 2nd ‘ 𝑋 ) ) |
| 15 |
14
|
funcrcl2 |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 16 |
14
|
funcrcl3 |
⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
| 17 |
1 2 3 7 10 13 15 16
|
natoppfb |
⊢ ( 𝜑 → ( 𝑌 𝑁 𝑋 ) = ( ( 𝐹 ‘ 𝑋 ) ( 𝑂 Nat 𝑃 ) ( 𝐹 ‘ 𝑌 ) ) ) |